

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Tan Wang 2021-11-01

- \triangleright The name Adam is derived from adaptive moment
- Diederik P. Kingma: Senior Research Scientist at Google Brain, Contributions: the Variational Auto-Encoder (VAE), the Adam method
- Jimmy Ba: Assistant Professor in University of Toronto, CIFAR AI chair, completed PhD under the supervision of Geoffrey Hinton, Published as a conference paper at ICLR 2015
- The Adam optimization paper is the world's $#1$ most cited scientific paper of the past five years (2015-2019)
- Google Scholar citations: 88891

- \triangleright The focus of this paper is on the optimization of stochastic objectives with high-dimensional parameters
- \triangleright Higher-order optimization methods are ill-suited, and discussion is restricted to first-order methods (memory constriction of GPU)
- \triangleright Efficient stochastic optimization techniques are required for a noisy objective
- \triangleright An extension to Stochastic Gradient Decent

 $\min E[f(\theta)]$

Momentum (Polyak, 1964)

$$
m_{t} = \beta m_{t-1} + (1 - \beta) g_{t}
$$

$$
\theta_{t} = \theta_{t-1} - a m_{t}
$$

$$
AdaGrad
$$

(Duchi et al., 2011)

$$
v_{t} = v_{t-1} + g_{t}^{2}
$$

$$
\theta_{t} = \theta_{t-1} - a \frac{g_{t}}{\sqrt{v_{t} + \varepsilon}}
$$

RMSProp (Tieleman & Hinton, $v_t = \beta v_{t-1}^{2012} + (1-\beta) g_t^2$ g_t $=\theta$ θ_{t}

$$
t_{t} = \theta_{t-1} - a \frac{\theta_{t}}{\sqrt{v_{t}} + \varepsilon}
$$

RMSProp +

Momentum $v_t = (B$ ravets $(\frac{1}{20}B)g_t^2$ $m_t = \beta m_{t-1} + (1 - \beta) g_t$ $\Delta\theta_t = \gamma \Delta\theta_{t-1} - a \frac{g_t}{\sqrt{v_t - m_t^2} + \varepsilon}$ $\theta_t = \theta_{t-1} + \Delta \theta_t$

 \triangleright Adam \approx RSPp + Mentum

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ $\hat{m}_t = \frac{m_t}{1 - \beta_1^t}$ $\hat{v}_t = \frac{v_t}{1 - \beta_2^t}$ $\theta_t = \theta_{t-1} - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t + \varepsilon}}$

Adam's Update Rule

- Assuming $\varepsilon = 0$, the effective step taken in parameter space at time step *t* is $\Delta_t = \alpha \cdot \hat{m}_t / \sqrt{\hat{v}_t}$
- \triangleright Two Upper Bounds $|\Delta_t| \le a \cdot (1 \beta_1) / \sqrt{1 \beta_2}$ when $(1 \beta_1) > \sqrt{1 \beta_2}$ $|\Delta_t| \leq a$ otherwise

► Proof

$$
m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1}) g_{t}
$$
\n
$$
\hat{m}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}
$$
\n
$$
\beta_{i} \in [0, 1)
$$
\n
$$
\Rightarrow \hat{m}_{t} = \frac{1 - \beta_{1}}{1 - \beta_{1}^{t}} \sum_{j=1}^{t} \beta_{1}^{t-j} g_{j}
$$
\n
$$
\beta_{2} > 2 \beta_{1} - \beta_{1}^{2} \Rightarrow \beta_{1} < \beta_{2}
$$
\n
$$
\hat{v}_{t} = \frac{1 - \beta_{2}}{1 - \beta_{2}^{t}} \sum_{j=1}^{t} \beta_{2}^{t-j} g_{j}^{2}
$$

Adam's Update Rule

- \triangleright This can be understood as establishing a trust region around the current parameter value, beyond which the current gradient estimate does not provide sufficient information
- \triangleright This typically makes it relatively easy to know the right scale of α in advance.
- The signal-to-noise ratio (SNR): $\hat{m}_t / \sqrt{\hat{v}_t}$
- A smaller SNR means that there is greater uncertainty about whether the direction of \overline{m} corresponds to the direction of the true gradient
- \triangleright The effective stepsize is also invariant to the scale of the gradients $(c \cdot \hat{m}_t)/\sqrt{c^2 \cdot \hat{v}_t} = \hat{m}_t/\sqrt{\hat{v}_t}$
-

Initialization Bias Correction

 \triangleright Here derive the term for the second moment estimate; the derivation for the first moment estimate is completely analogous

$$
v_{t} = \beta_{2}v_{t-1} + (1 - \beta_{2})g_{t}^{2}, v_{0} = 0
$$

$$
v_{t} = (1 - \beta_{2})\sum_{j=1}^{t} \beta_{2}^{t-j}g_{j}^{2}
$$

$$
E[v_{t}] = E\left[(1 - \beta_{2})\sum_{j=1}^{t} \beta_{2}^{t-j} \cdot g_{j}^{2} \right]
$$

$$
E[g_{t}^{2}] \cdot (1 - \beta_{2})\sum_{j=1}^{t} \beta_{2}^{t-j} + \xi
$$

$$
= E[g_{t}^{2}] \cdot (1 - \beta_{2}^{t}) + \xi
$$

If the true second moment is stationary, $\xi = 0$

Initialization Bias Correction

- \triangleright The term (1 − β_2^t) is caused by initializing the running average with zeros
- \triangleright We therefore divide by this term to correct the initialization bias

Convergence Analysis

- \triangleright Analyze the convergence of Adam using the online learning framework proposed in (Zinkevich, 2003).
- \triangleright Given an arbitrary, unknown sequence of convex cost functions $f_1(\theta), f_2(\theta),..., f_\tau(\theta)$
- At each time t, our goal is to predict the parameter θ_t and evaluate it on a previously unknown cost function f_t . .
- \triangleright Since the nature of the sequence is unknown in advance, we evaluate our algorithm

using the regret

$$
R(T) = \sum_{t=1}^{T} \Big[f_t(\theta_t) - f_t(\theta^*) \Big]
$$

$$
\theta^* = \arg \min_{\theta \in X} \sum_{t=1}^{T} f_t(\theta)
$$

 \triangleright We show Adam has $O(\sqrt{T})$ regret bound

Figure 1: Logistic regression training negative log likelihood on MNIST images and IMDB movie reviews with 10,000 bag-of-words (BoW) feature vectors.

 \triangleright Non-convex objective functions.

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs. (right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

AdaMax

 \triangleright We can generalize the L2 norm based update rule to a Lp norm based update rule

 u_t

$$
v_t = \beta_2^p v_{t-1} + (1 - \beta_2^p) |g_t|^p
$$

= $(1 - \beta_2^p) \sum_{i=1}^t \beta_2^{p(t-i)} \cdot |g_i|^p$

$$
= \lim_{p \to \infty} (v_t)^{1/p} = \lim_{p \to \infty} \left((1 - \beta_2^p) \sum_{i=1}^t \beta_2^{p(t-i)} \cdot |g_i|^p \right)^{1/p}
$$

$$
= \lim_{p \to \infty} (1 - \beta_2^p)^{1/p} \left(\sum_{i=1}^t \beta_2^{p(t-i)} \cdot |g_i|^p \right)^{1/p}
$$

$$
= \lim_{p \to \infty} \left(\sum_{i=1}^t \left(\beta_2^{(t-i)} \cdot |g_i| \right)^p \right)^{1/p}
$$

$$
= \max \left(\beta_2^{t-1} |g_1|, \beta_2^{t-2} |g_2|, \dots, \beta_2 |g_{t-1}|, |g_t| \right)
$$

 $u_t = \max(\beta_2 \cdot u_{t-1}, |g_t|)$

$$
m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})g_{t}
$$

$$
u_{t} = \max(\beta_{2} \cdot u_{t-1}, |g_{t}|)
$$

$$
\theta_{t} = \theta_{t-1} - \frac{a}{1 - \beta_{1}^{t}} \cdot \frac{m_{t}}{u_{t}}
$$

 \triangleright The magnitude of parameter updates has a simpler bound $|\Delta_t| \le a$

- \triangleright Adam is aimed towards machine learning problems with large datasets and/or high dimensional parameter spaces
- \triangleright The method is straightforward and requires little memory.
- \triangleright Adam is well-suited to a wide range of non-convex optimization problems.
- Easy to know the right scale of α in advance
- \triangleright Provide bound for general convex online learning problem

Thanks!

