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A Hierarchical Framework of Stochastic Optimization

According to Peter Glynn, 1986, stochastic optimization can be
viewed in terms of three structure:

® |nfinite-Dimensional Stochastic Optimization
® e.g. determining a time-varying policy.
® Finite-Dimensional Stochastic Optimization
® Continuous Parameter Stochastic Optimization
® e.g. optimization over a subset of Euclidean space.
® Discrete Parameter Stochastic Optimization
® e.g. optimization over some alternatives.
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The Difference Between Discrete and Continuous Stochastic
Optimization

Although it seems that the discrete optimization seems easier,
since discrete optimization has less candidate. But in fact the
opposite is true.

e Continuous Optimization is easier than Discrete Optimization
in some sense.

® Discrete problem'’s solution is tailor-made to the application
for most case, while Continuous algorithms are more robust
and can be applied to general problem.
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Problem Definition

In the fields of manufacturing engineering, operations research, and
management science, we often find a discrete optimization problem
in which an objective function g is minimized over a nonempty
discrete finite feasible set S:

min{g(s)|s € S}, (1)

where g: S — R and S = {s1,%, -, s} is a finite feasible set.
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Problem Definition

In practice the objective function g(s) is often the expectation of
the performance of a system that is subject to stochastic
phenomena. We can define it as:

g(s) = Elh(s, Y(s))], (2)

where E denotes the expectation, h is a function of s and y, and
Y (s) is a random vector dependent on s.

In such problems, a closed-form formula is often not available for
the objective function g(s), and one is forced to estimate g(s) by
Monte Carlo-type simulation.
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Difficulties in Discrete Problems

According to Nelson and Hong, 2015, There are three fundamental
types of errors that occur in discrete optimization problems;

® The optimal solution is never simulated.
® The best solution that was simulated is not selected.

® We do not have a good estimate of the objective function
value of the solution we do select.

So how to address these issues is a main subject of the proposed
methods.
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Optimality Conditions

Let S* = argming(x) : x € S be the solution of problem (1). The
finiteness of S implies that there exists a positive constant o > 0

such that

g <gly)—o for all ye S\S*, (3)

where g* = minycs(x) is the objective value.
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Optimality Conditions

Although the optimal solution S* is clearly defined, defining
optimality conditions is not easy.

® The objective function g(x) cannot be calculated exactly.

e Typically g(x) and Y(x) are unknown functions that are
embedded in simulation models.

e Although S is a finite set, it often has a large number of
feasible solutions.
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Optimality Conditions

Despite these difficulties, researchers have established various
optimality conditions for discrete optimization problems that are
either theoretically convenient or practically useful.

® When |S] is small, a practical approach is to analyze the
probability of correct selection(PCS). i.e.

Px*e®)>1-«

® When |S] is large, we can relax the goal. Denote T as the top
t solutions and S is the final n solutions. Our goal is

P|TNS|>1)>1-a

® Another optimality condition in global convergence algorithms
is limm_oo P (X}, € S*) = 1.

Shoudao Wang

Stochastic Discrete Optimization



Stochastic Discrete Optim
©000000000000000

© Stochastic Discrete Optimization

Shoudao Wang

Stochastic Discrete Optimizatiol



Stochastic Discrete Optim
0@000000000000000C

Problem structure and assumptions

Recall the problem we defined in (1) and (2), one can easily come
up with a idea that the objective function g(s) can be replaced by
its estimate gy(s) based on ¢ simulation experiments. But there are
two main problems lies here:
® |t is not obvious how large the sample size ¢ should be to
guarantee the convergence of the optimization technique.
® |f the feasible set S is large, then the simulation effort is
unacceptable large.
The algorithm proposed in this paper solved this problem by
transfer this problem into a maximization problem of a probability.
This new problem can be solved by constructing a Markov Chain
whose stationary probability distribution converges to the optimal
solution.
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Problem structure and assumptions

Denote the global optimum set by
S*={seS|g(s)<g(s),vs'eS} (4)
Recall that g(s) = E[H(s, Y(s)]. Here H(s) is a random variable.

The assumption we need here is that H(s) has a limited variance,
i.e.

E [H(s)?] <oo,¥s€ S (5)
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Translation to a maximization problem

The paper transfer the minimization problem into a maximization
by introducing a stochastic ruler.

Let ©(a, b) denote the uniformly distributed random variable. Here
a and b represent a lower and upper bound for {H(s)|s € S}. The
probability P(s, a, b) is defined as

P(s,a,b) = P[H(s) < ©(a, b)] (6)
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Translation to a maximization problem

We can intuitively see that minimizing g(s) = E[H(s)] is
equivalent to maximizing the probability P(s, a, b) provided the
interval (a, b) is sufficiently wide.

Hence we can transfer the original problem(1) into the following
maximization problem:

max{P(s,a, b) | s € S} (7)
The global optimum solution set for this maximization problem is

S*(a,b) ={s€ S| P(s,a,b) = P(s',a,b)Vs' € S}  (8)
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The following theorem rigorously delineates the relationship
between the original minimization problem and the above
maximization problem.

Theorem 1

There exist a real number 3 and b such that a < b and for any
a < a and any b < b, the following conclusion hold:

1. If g(s) < g(s') then P(s,a, b) > P(s,a, b),
2. 0< P(s,a,b) <1, forallse S
3. 5*(a,b) C §* and S*(a,b) # @.
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Translation to a maximization problem

The Theorem (1) mainly states the following points:
® The maximization problem has at least one solution

® Any solution of maximization problem is a solution of the
original minimization problem.

Actually the converse also holds.

Theorem 2

Suppose there exist reals a(s) and b(s) such that
a(s) < H(s) < b(s) w.p.1 (9)

If a < min{a(s)|s € S} and b > max{b(s)|s € S}, then
S*(a,b) = S*.
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Definition and assumptions on Computational method

Since we have the maximization problem now, we now have to find
a way to solve it. The paper solve by constructing a Markov chain
that converges to a global solution to the problem.

Before diving into the algorithm, we need some definition and
assumption first.

Definition 1

For each s € S, there exists a subset N(s) of S — {s}, which is
called the set of neighbors of s.

The search is organized in such a way that the next solution
candidate is found among the neighbors of the present candidate.
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Definition and assumptions

To ensure that our search will eventually cover all the elements of
S, we make the following assumption.

Assumption 1

For any pair (s,s')in S x S, s is reachable from s; i.e., there
exists a finite sequence, {n,-}ffzo for some /¢, such that
Sno =S, Sn, =S5, Sp, €N(sy), i=0,1,2,---,0—1.

Now we impose a structure to the selection of a candidate .

Definition 2

A function R : S x S — [0, 1] is said to be a transition probability
for S and N if

1. R(s,s') >0« s’ € N(s).
2. ZSIGS R(S,Sl) = 1

Shoudao Wang

Stochastic Discrete Optimization



Stochastic Discrete Optim
0000000000000

Definition and assumptions

Now we introduce the following simplification.

Assumption 2

The neighbor system N and the transition probability R for S are
symmetric, i.e.,

1. s € N(s) & s € N(s') and
2. R(s,s") = R(s',s).

In the algorithm, we make use of a sequence of positive integers
tending to infinity.

Assumption 3

A sequence { My} of positive integers satisfies My — oo as k — oc.
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The Stochastic Algorithm

Aside from N, R, and { M} defined above, the proposed stochastic
algorithm requires parameters, a and b, and an initial guess sp € S
for the optimal solution.

THE STOCHASTIC ALGORITHM.

Data: N, R,{M,}, a, b, so€ S.

Step 0: Set X,=s, and k=0.

Step 1: Given X, =s, choose a candidate Z, from N(s) with probability distri-
bution

P[Z, =5/ X, =s5]=R(s,s),s'e N(s).
Step 2: Given Z, = s, set
{Zk, with probability py,
Xi1 = . P
X, with probability (1—p,),
where
pe={P[H(s")=0(a, b)}" ={P(s, a, b)}"x.

Remark. Since we are interested in cases in which the probability P(s’, a, b) given
above in Step 2 is not explicitly computable, we suggest a subalgorithm for implementing
Step 2 immediately following the algorithm.

Step 3: Set k=k+1 and go to Step 1.
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The Stochastic Algorithm

The implementation of Step 2 of the above algorithm may be
accomplished by the following subalgorithm where P(s’, a, b) need
not be computed.
1. Setc =1,
2. Draw a sample h(s’) from H(s'). Next draw a sample 6 from
©(a, b).
® If h(s') > 0, then set X1 = X, break.
® Else if ¢ > My, set Xy 1 = Zx = §', break.
® Else set ¢ = ¢ + 1 and continue Step 2 from beginning.
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The Stochastic Algorithm

The random process { Xy} produced by the Stochastic Algorithm is
a discrete-time Markov chain defined over states S, and its state
transition probabilities are given by

Pss’ (Mk) =P [Xk+1 = Sl/Xk = S]

R(S, 5/){/3(5/,3, b)}Mk ) if S/ S N(S)
=91 =2 vene R(s.s"){P(s", a, by ifs =
0, otherwise.
(10)

We make use of the state transition probability matrix, which is a
matrix consisting of the above probabilities:

'D(Mk) = (Pss’ (Mk)) (11)
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Analysis for the stationary process

We now suspend the Assumption 3 and set M, to a positive
integer M. For each s € S, define

{PIH(s) = ©(a,p)}"  {P(s.a b)}"
Yoes{PIH(s) S 0(a, b} Syes{P(s' a,b)}"

ms(M) =

Theorem 3

The vector w(M) consisting of ws(M) is the stationary probability
distribution for the Markov chain {X\} generated by the stochastic
algorithm, i.e.,
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The limiting behavior of the stationary distribution
We now investigate the behavior of the stationary probability
distribution {ms(M)|s € S} as M goes to infinity.

Definition 3

Given a finite set S, the set 1(S) of positive unit vectors is called
the set of probability vectors for S, below:

nes) = {7r €0, 1] [ms 20, |7l =) 7 = 1},

seS
where k = |S]| represents the cardinality of S.

A probability vector 7* for S is called optimal if 7* = 0 for any

s¢ S*.
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The limiting behavior of the stationary distribution

The probability vector m(M) converges, as M goes to infinity, to an
optimal probability vector m*. Furthermore

. {1/]5*(a,b)|, if s € 5*(a, b)
. =

s .
0, otherwise

where |S*(a, b)| represent the cardinality of S*(a, b)

Proposition 1

1. For each s € S*(a, b), if M < M’ then n(M) < ns(M").

2. For each s ¢ S* there exists an integer Ms such that if
Ms < M < M’ then 7ws(M) > ms(M’).
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Rate of convergence

Theorem 5

Suppose that reals ¢ and r, integer ko, and a sequence { My} are
selected as in Theorem 7.1 in the paper. Then for a sufficiently
large integer m,

x(mr) 7] < O (1/m?)

where t = min{t,t} = min{(p/r¢/2),nc/2} > 0.
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Advantages and disadvantages of the algorithm

Advantages:
® This algorithm is globally convergent in theory.

® When there are large number of alternatives, this algorithm
can be used while R&S can not.

® Since in each iteration it retains no past data, this algorithm
is memory free.

Disadvantage:
® |t's hard to determine when to stop for this algorithm.
® The computation effort goes up as iteration goes up.

® |t is not a adaptive method. Lack of past information result in
a poor performance in practice.
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THANK YOU!
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