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A Hierarchical Framework of Stochastic Optimization

According to Peter Glynn, 1986, stochastic optimization can be
viewed in terms of three structure:

• Infinite-Dimensional Stochastic Optimization
• e.g. determining a time-varying policy.

• Finite-Dimensional Stochastic Optimization
• Continuous Parameter Stochastic Optimization

• e.g. optimization over a subset of Euclidean space.
• Discrete Parameter Stochastic Optimization

• e.g. optimization over some alternatives.

Shoudao Wang
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The Difference Between Discrete and Continuous Stochastic
Optimization

Although it seems that the discrete optimization seems easier,
since discrete optimization has less candidate. But in fact the
opposite is true.

• Continuous Optimization is easier than Discrete Optimization
in some sense.

• Discrete problem’s solution is tailor-made to the application
for most case, while Continuous algorithms are more robust
and can be applied to general problem.
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Problem Definition

In the fields of manufacturing engineering, operations research, and
management science, we often find a discrete optimization problem
in which an objective function g is minimized over a nonempty
discrete finite feasible set S:

min{g(s)|s ∈ S}, (1)

where g : S → R and S = {s1, s2, · · · , sκ} is a finite feasible set.
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Problem Definition

In practice the objective function g(s) is often the expectation of
the performance of a system that is subject to stochastic
phenomena. We can define it as:

g(s) = E [h(s,Y (s))], (2)

where E denotes the expectation, h is a function of s and y , and
Y (s) is a random vector dependent on s.

In such problems, a closed-form formula is often not available for
the objective function g(s), and one is forced to estimate g(s) by
Monte Carlo-type simulation.

Shoudao Wang
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Difficulties in Discrete Problems

According to Nelson and Hong, 2015, There are three fundamental
types of errors that occur in discrete optimization problems;

• The optimal solution is never simulated.
• The best solution that was simulated is not selected.
• We do not have a good estimate of the objective function

value of the solution we do select.
So how to address these issues is a main subject of the proposed
methods.
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Optimality Conditions

Let S∗ = argmin g(x) : x ∈ S be the solution of problem (1). The
finiteness of S implies that there exists a positive constant σ > 0
such that

g∗ ≤ g(y)− σ for all y ∈ S\S∗, (3)

where g∗ = minx∈S(x) is the objective value.

Shoudao Wang
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Optimality Conditions

Although the optimal solution S∗ is clearly defined, defining
optimality conditions is not easy.

• The objective function g(x) cannot be calculated exactly.
• Typically g(x) and Y (x) are unknown functions that are

embedded in simulation models.
• Although S is a finite set, it often has a large number of

feasible solutions.
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Optimality Conditions

Despite these difficulties, researchers have established various
optimality conditions for discrete optimization problems that are
either theoretically convenient or practically useful.

• When |S| is small, a practical approach is to analyze the
probability of correct selection(PCS). i.e.

P (x∗ ∈ Θ∗) ≥ 1 − α

• When |S| is large, we can relax the goal. Denote T as the top
t solutions and Ŝ is the final n solutions. Our goal is

P(|T ∩ Ŝ| ≥ 1) ≥ 1 − α

• Another optimality condition in global convergence algorithms
is limm→∞ P (x⋆m ∈ S⋆) = 1.

Shoudao Wang
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Problem structure and assumptions

Recall the problem we defined in (1) and (2), one can easily come
up with a idea that the objective function g(s) can be replaced by
its estimate ĝℓ(s) based on ℓ simulation experiments. But there are
two main problems lies here:

• It is not obvious how large the sample size ℓ should be to
guarantee the convergence of the optimization technique.

• If the feasible set S is large, then the simulation effort is
unacceptable large.

The algorithm proposed in this paper solved this problem by
transfer this problem into a maximization problem of a probability.
This new problem can be solved by constructing a Markov Chain
whose stationary probability distribution converges to the optimal
solution.

Shoudao Wang
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Problem structure and assumptions

Denote the global optimum set by

S∗ =
{

s ∈ S | g(s) ≦ g
(
s ′
)
, ∀s ′ ∈ S

}
(4)

Recall that g(s) = E[H(s,Y (s)]. Here H(s) is a random variable.

The assumption we need here is that H(s) has a limited variance,
i.e.

E
[
H(s)2] < ∞, ∀s ∈ S (5)

Shoudao Wang
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Translation to a maximization problem

The paper transfer the minimization problem into a maximization
by introducing a stochastic ruler.

Let Θ(a, b) denote the uniformly distributed random variable. Here
a and b represent a lower and upper bound for {H(s)|s ∈ S}. The
probability P(s, a, b) is defined as

P(s, a, b) = P[H(s) ≦ Θ(a, b)] (6)

Shoudao Wang
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Translation to a maximization problem

We can intuitively see that minimizing g(s) = E[H(s)] is
equivalent to maximizing the probability P(s, a, b) provided the
interval (a, b) is sufficiently wide.

Hence we can transfer the original problem(1) into the following
maximization problem:

max{P(s, a, b) | s ∈ S} (7)

The global optimum solution set for this maximization problem is

S∗(a, b) =
{

s ∈ S | P(s, a, b) ≧ P
(
s ′, a, b

)
∀s ′ ∈ S

}
(8)
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The following theorem rigorously delineates the relationship
between the original minimization problem and the above
maximization problem.

Theorem 1
There exist a real number a and b such that a < b and for any
a < a and any b < b, the following conclusion hold:

1. If g(s) < g(s ′
) then P(s, a, b) > P(s ′

, a, b),
2. 0 < P(s, a, b) < 1, for all s ∈ S
3. S∗(a, b) ⊂ S∗ and S∗(a, b) ̸= ∅.

Shoudao Wang
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Translation to a maximization problem

The Theorem (1) mainly states the following points:
• The maximization problem has at least one solution
• Any solution of maximization problem is a solution of the

original minimization problem.
Actually the converse also holds.

Theorem 2
Suppose there exist reals a(s) and b(s) such that

a(s) ≤ H(s) ≤ b(s) w .p.1 (9)

If a < min{a(s)|s ∈ S} and b > max{b(s)|s ∈ S}, then
S⋆(a, b) = S⋆.
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Definition and assumptions on Computational method

Since we have the maximization problem now, we now have to find
a way to solve it. The paper solve by constructing a Markov chain
that converges to a global solution to the problem.

Before diving into the algorithm, we need some definition and
assumption first.

Definition 1
For each s ∈ S, there exists a subset N(s) of S − {s}, which is
called the set of neighbors of s.
.
The search is organized in such a way that the next solution
candidate is found among the neighbors of the present candidate.

Shoudao Wang
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Definition and assumptions

To ensure that our search will eventually cover all the elements of
S, we make the following assumption.

Assumption 1
For any pair (s, s ′

) in S × S, s ′ is reachable from s; i.e., there
exists a finite sequence, {ni}ℓi=0 for some ℓ, such that
sn0 = s, snℓ

= s ′, sni+1 ∈ N (sni ) , i = 0, 1, 2, · · · , ℓ− 1.
.
Now we impose a structure to the selection of a candidate .

Definition 2
A function R : S × S → [0, 1] is said to be a transition probability
for S and N if

1. R (s, s ′) > 0 ⇔ s ′ ∈ N(s).
2.

∑
s′∈S R (s, s ′) = 1.

Shoudao Wang
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Definition and assumptions

Now we introduce the following simplification.

Assumption 2
The neighbor system N and the transition probability R for S are
symmetric, i.e.,

1. s ′ ∈ N(s) ⇔ s ∈ N(s ′) and
2. R(s, s ′) = R(s ′, s).

In the algorithm, we make use of a sequence of positive integers
tending to infinity.

Assumption 3
A sequence {Mk} of positive integers satisfies Mk → ∞ as k → ∞.

Shoudao Wang
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The Stochastic Algorithm

Aside from N,R, and {Mk} defined above, the proposed stochastic
algorithm requires parameters, a and b, and an initial guess s0 ∈ S
for the optimal solution.

Figure 1: The Stochastic AlgorithmShoudao Wang
Stochastic Discrete Optimization 23 / 31
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The Stochastic Algorithm

The implementation of Step 2 of the above algorithm may be
accomplished by the following subalgorithm where P(s ′, a, b) need
not be computed.

1. Set c = 1;
2. Draw a sample h(s ′) from H(s ′). Next draw a sample θ from

Θ(a, b).
• If h(s ′) > θ, then set Xk+1 = Xk , break.
• Else if c > Mk , set Xk+1 = Zk = s ′, break.
• Else set c = c + 1 and continue Step 2 from beginning.

Shoudao Wang
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The Stochastic Algorithm

The random process {Xk} produced by the Stochastic Algorithm is
a discrete-time Markov chain defined over states S, and its state
transition probabilities are given by

Pss′ (Mk) = P
[
Xk+1 = s ′/Xk = s

]
=


R (s, s ′) {P (s ′, a, b)}Mk , if s ′ ∈ N(s)
1 −

∑
s′′∈N(s) R (s, s ′′) {P (s ′′, a, b)}Mk , if s ′ = s

0, otherwise.
(10)

We make use of the state transition probability matrix, which is a
matrix consisting of the above probabilities:

P (Mk) = (Pss′ (Mk)) (11)

Shoudao Wang
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Analysis for the stationary process

We now suspend the Assumption 3 and set Mk to a positive
integer M. For each s ∈ S, define

πs(M) =
{P[H(s) ≦ Θ(a, b)]}M∑

s′∈S {P [H (s ′) ≦ Θ(a, b)]}M =
{P(s, a, b)}M∑

s′∈S {P (s ′, a, b)}M

Theorem 3
The vector π(M) consisting of πs(M) is the stationary probability
distribution for the Markov chain {Xk} generated by the stochastic
algorithm, i.e.,

π(M)P(M) = π(M)

Shoudao Wang
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The limiting behavior of the stationary distribution

We now investigate the behavior of the stationary probability
distribution {πs(M)|s ∈ S} as M goes to infinity.

Definition 3
Given a finite set S, the set Π(S) of positive unit vectors is called
the set of probability vectors for S, below:

Π(S) =
{
π ∈ [0, 1]κ | πs ≧ 0, ∥π∥ =

∑
s∈S

πs = 1
}
,

where κ = |S| represents the cardinality of S.

Definition 4
A probability vector π⋆ for S is called optimal if π⋆ = 0 for any
s /∈ S⋆.

Shoudao Wang
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The limiting behavior of the stationary distribution

Theorem 4
The probability vector π(M) converges, as M goes to infinity, to an
optimal probability vector π⋆. Furthermore

π∗
s =

{
1/ |S∗(a, b)| , if s ∈ S∗(a, b)
0, otherwise

where |S∗(a, b)| represent the cardinality of S⋆(a, b)

Proposition 1

1. For each s ∈ S⋆(a, b), if M < M ′ then π(M) ≤ πs(M ′).
2. For each s /∈ S⋆ there exists an integer Ms such that if

Ms ≤ M < M ′ then πs(M) ≥ πs(M ′).

Shoudao Wang
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Rate of convergence

Theorem 5
Suppose that reals c and r , integer k0, and a sequence {Mk} are
selected as in Theorem 7.1 in the paper. Then for a sufficiently
large integer m,

∥x(mr)− π∗∥ ≦ O
(
1/mt)

where t = min{t̂, t̄} = min{(ρ/r c/2), ηc/2} > 0.
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Advantages and disadvantages of the algorithm

Advantages:
• This algorithm is globally convergent in theory.
• When there are large number of alternatives, this algorithm

can be used while R&S can not.
• Since in each iteration it retains no past data, this algorithm

is memory free.
Disadvantage:

• It’s hard to determine when to stop for this algorithm.
• The computation effort goes up as iteration goes up.
• It is not a adaptive method. Lack of past information result in

a poor performance in practice.
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Thank you!
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