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The optimization problem

The optimization problem is to find a configuration, i (not
necessarily unique), from a discrete finite set of alternatives, S, that
minimizes an objective function, g(i), i.e.,

min
i∈S

{g(i)}

with g : S → R and S = {1, 2, ..., s}. That is, we wish to find a
global optimal configuration i ∈ S, where S is the global optimal
set, given by

S∗ = {i ∈ S |g(i) ≤ g(j) ∀j ∈ S}
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Assumption

• |S | is very large.Let us denote the cardinality of the solution
space S by |S | (note that |S | = s)

• we do not have an analytic expression for the objective
function g(i) and that it can only be evaluated via Monte
Carlo simulation.

Let H(i) be a sample estimate of g(i)
• g(i) = E [H(i)], ∀i ∈ S(i .e.,H(i) is unbiased)
• variance of the estimate is finite,

i.e.,E [H(i)− E [H(i)]]2 < ∞, ∀i ∈ S .
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standard definitions and assumption

Definition 2.1
For each i ∈ S , there exists a subset N(i) of S{i}, which is called
the set of neighbors of i.

Definition 2.2
A function R : S × S → [0, 1] is said to be a generating probability
for S and N if
• R(i , j) > 0 ⇔ j ∈ N(i)

• ∑
j∈S R(i , j) = 1 for i , j ∈ S
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standard definitions and assumption

Assumption 1

For any pair (i , j) ∈ S × S , j is reachable from i, i.e., there exists a
finite sequence {nm}lm=0 for some l, such that in0 = i , inl = j , and
inm+1 ∈ N(inm) for m = 0, 1, 2, ..., l − 1.
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convergence of SA and SR

• For SA(Simulated Annealing), it has been proved that a real
sequence{Tk}∞k=0 satisfying Tk = γ

log(k+k0+1) , k = 0, 1, 2, ...,
for some positive numbers γ and k0 will guarantee that the
algorithm will converge to a global optimum. Tk is called the
temperature at the kth iteration of the sequence and {Tk}∞k=0
is called the cooling schedule.

• For SR(Stochastic Ruler), it has been proved that an integer
sequence {Mk}∞k=0 satisfying
Mk = ⌊clogσ(k + k0 + 1)⌋,k = 0, 1, 2, ...(⌊ξ⌋ denotes the
greatest integer that is smaller than or equal to ξ), for some
positive numbers c , σ, andk0 will guarantee that the algorithm
will converge to a global optimum. We call Mk the kth testing
number and {Mk}∞k=0 the testing sequence.
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standard way to prove convergence

if we let Xk denote the configuration visited by the algorithm at the
kth iteration, then {Xk}∞k=1 is a Markov chain. Then, to prove the
convergence of the algorithm, all one has to do is to show that the
probability vector e(k) = [e1(k)...es(k)] with ei (k)

.
= Pr{Xk = i}

for i = 1, ..., s converges to an optimal probability vector
e = [e1...es ], i.e., that

e∗i > 0 for i ∈ S∗

e∗i = 0 for i /∈ S∗
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one-step transition probabilities of SA and SR

For SA, the one-step transition probabilities of the Markov chain
Xk for a given temperature T are

Pij(T ) =


R(i , j)min

[
1, e−{g(j)−g(i)}/T ] if j ∈ N(i)

1 −
∑

n∈N(i) Pin(T ) if j = i

0 otherwise

For SR, the one-step transition probabilities of the Markov chain
{Xk} for a given testing number M are

Pij(M) =


R(i , j){P(j , a, b)}M if j ∈ N(i)

1 −
∑

n∈N(i) Pin(M) if j = i

0 otherwise

where P(i , a, b) = P[H(i) ≤ θ(a, b)], Pij(M) is the probability that
the search goes from configuration i to con- figuration j when the
testing number is M.
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Limitation of SA and SR

• SA does not converge when the objective function estimates
are noisy.SR is more robust with respect to estimation error.

• The SA algorithm must often visit poor configurations so as
not to overlook the possibility that there might be a very good
configuration surrounded by poor configurations.

• For the SR algorithm, one has to choose the size of the
stochastic ruler, which can also be difficult in practice.
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motivation

• SC algorithm differs from the SR algorithm in that, instead of
comparing candidate configurations to a stochastic ruler, it
directly compares the current configuration to a candidate
configuration.

• The SC algorithm, therefore, does not require any knowledge
whatsoever about the structure of the search space.

• This does mean, however, that convergence is only guaranteed
when any configuration (in the whole configuration space) can
be reached from any other in one step. In other words, we
have eliminated the neighborhood structure for the sake of
convergence.
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An alternative problem

Define
sp(i) =

∑
j∈S/{i}

Pr [H(i) < H(j)]

The SC algorithm, therefore, seeks to identify a member of the
optimum set S∗, where S

∗
= {i ∈ S |sp(i) ≥ sp(j)∀j ∈ S}. Let

Wi = H(i)− g(i) denote the estimation error, and assume that it
satisfies the following conditions.

Assumption 3.1

1. Wi , i ∈ S are i.i.d.
2. Each Wi , i ∈ S , has a symmetric continuous probability density
function with a zero mean.
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Theorem 3.1
Under Assumption 3.1,

E [H(i)] < E [H(j)] ⇔ sp(i) > sp(j) ∀i ̸= j , i , j ∈ S

.

Corollary 3.1

Given H(i),H(j)∀i ̸= j , i , j ∈ S , we have

E [H(i)] < E [H(j)] ⇔ Pr [H(i) < H(j)] > Pr [H(j) < H(i)]

.
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Lemma 3.1
Given H(i),H(j),H(k) ∀i ̸= j , j ̸= k , k ̸= i ; i , j , k ∈ S , and
Assumption 3.1, the following two conditions are equivalent:
1. E [H(i)] < E [H(j)] < E [H(k)];
2. Pr [H(i) < H(k)] > Pr [H(j) < H(k)] and
Pr [H(i) < H(k)] > Pr [H(i) < H(j)].

Assumption 3.2

R(i , j) > 0 ∀i , j ∈ S and i ̸= j
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SC algorithm

Figure 1: SC algorithm
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For convergence, the testing sequence used by the SC algorithm
must satisfy the same conditions as those required by the SR
algorithm; i.e., Mk must be such that
Mk = clogσ(k + k0 + 1), k = 0, 1, 2, ...,for some positive numbers
c , σ, and k0.
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Due to the i.i.d. assumption of {Hl(i), l = 1, ...,Mk ; i ∈ S}, the
state transition probability from i to j is

R(i , j)Pr [H1(j) < H1(i), ...,HMk
(j) < HMk

(i)]

= R(i , j)Pr [H(j) < H(i)]Mk

Thus, the sequence of configurations visited by the SC algorithm
forms a time-inhomogeneous Markov chain {Xk}.

Ouyang Wanlu

Stochastic Comparison Algorithm For Discrete Optimization With Estimation 20 / 40



The optimization problem SA and SR algorithms The stochastic comparison algorithm Numerical examples

An outline of our analysis is as follows.
1. Set Mk = M and study the corresponding Markov chain at its
steady state (the steady-state probability distribution is denoted by
π(M)).
2. Let M go to infinity and show that
(a) π(M) converges to an optimal probability vector; and
(b) for large M, π(M) is monotonic in M.
3. Show that the Markov chain with Mk = M is weakly ergodic by
calculating the coefficient of ergodicity.
4. Show that the Markov chain with Mk = M is strongly ergodic.
5. Show the convergence of the Markov chain {Xk} based on its
strong ergodicity.
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Markov chain equations

The one-step state transition probabilities of the Markov chain
{Xk} generated by the SC algorithm for a given testing number M
are

Pij(M) =

{
R(i , j){Pr[H(j) < H(i)]}M if j ̸= i

1 −
∑s

n=1,n ̸=i Pin(M) if j = i

To simplify notation, we will let rij = R(i , j), pij = Pr [H(j) < H(i)],
and tij = rijp

M
ij (i ̸= j), where s = |S | represents the size of the

configuration space. Using our shorthand notation, we can write
the one-step transition probabilities as

P(M) =


1 −

∑s
n=2 t1n t12 t13 · · · t1s

t21 1 −
∑s

n=1,n ̸=2 t2n t23 · · · t2s
t31 t32 1 −

∑t
n=1,n ̸=3 t3n · · · t3s

...
...

...
. . .

...
ts1 ts2 ts3 · · · 1 −

∑s−1
n=1 tsn
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π(M) = π(M)P(M) and
∑

i∈S πi (M) = 1 ⇔ AπT (M) = b where

A =


1 1 1 · · · 1
t12 −

∑s
n=1,n ̸=2 t2n t32 · · · ts2

t13 t23 −
∑s

n=1,n ̸=3 t3n · · · ts3
...

...
...

. . .
...

t1s t2s t3s · · · −
∑s−1

n=1 tsn


=

[
a1 a2 a3 · · · as

]
b = [1 0 0 ... 0]T

Define

Bm =
[
a1 · · · am−1 b am+1 · · · as

]
i.e., {Bm}sm=1 is obtained by replacing the mth column of the
matrix A by the vector b.
then |A| = |B1|+ |B2|+ + |Bs | and πi (M) = |Bi |

|A|
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expand each |Bi |

|Bi | =∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
∑s

n=2 t1n · · · t(i−1)1 t(i+1)1 · · · ts1
...

. . .
...

...
. . .

...
t1(i−1) · · · −

∑s
n=1,n ̸=i−1 t(i−1)n t(i+1)(i−1) · · · ts(i−1)

t1(i+1) · · · t(i−1)(i+1) −
∑s

n=1,n ̸=i+1 t(i+1)n · · · ts(i+1)
...

. . .
...

...
. . .

...
t1s · · · t(i−1)s t(i+1)s · · · −

∑s−1
n=1 tsn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Pi =
s∏

j=1,j ̸=i

pji =
s∏

j=1,j ̸=i

Pr[H(i) < H(j)]

Pℓ
i =

s∏
j=1,j ̸=i

pjkj =
s∏

j=1,j ̸=i

Pr [H (kj) < H(j)]
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Convergence of the SC algorithm

Define

f(k) = f(0)P1P2 · · ·Pk and f(m,k) = f(0)Pm+1Pm+2 · · ·Pm+k

A time-inhomogeneous Markov chain {Yk} is called weakly ergodic
if, ∀m

lim
k→∞

sup
f(0),g(0)

∥∥∥f(m,k) − g(m,k)
∥∥∥ = 0

where f (0) and g(0) are starting probability vectors.
A time-inhomogeneous Markov chain {Yk} is called strongly
ergodic if there exists a probability vector q such that, ∀m

lim
k→∞

sup
f(0)

∥∥∥f(m,k) − q
∥∥∥ = 0

where f (0) is a starting probability vector.
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weak ergodicity

Theorem A.1 (Theorem V.3.2 of [19])

Let {Xn} be a nonstationary Markov chain with transition
matrices,{Pn}∞n=1. The chain, {Xn}, is weakly ergodic if and only if
there exists a subdivision of P1 · P2 · P3 · ·· into blocks of matrices
[P1 ·P2 · · ·Pn1 ] · [Pn1+1 ·Pn1+2 · · ·Pn2 ] · · · [Pnj+1 ·Pnj+2 · · ·Pnj+1]...
such that

∞∑
j=0

α
(
P(nj ,nj+1)

)
= ∞

where n0 = 0, P(m, k) = Pm+1 · Pm+2 · · · Pk ,
α(P) = mini ,k

∑∞
j=1 min(pij , pkj)
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strong ergodicity

Theorem A.2 (Theorem V.4.3 of [19])

Let Pn be a sequence of transition matrices corresponding to a
nonstationary weakly ergodic Markov chain with Pn ∈ A for all n. If
there exists a corresponding sequence of left eigenvectors ϕn,
satisfying

∞∑
j=0

∥ϕj − ϕj+1∥ < ∞

then the chain is strongly ergodic.
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A testbed system

1.We design a testbed system with one million configurations.
2.we divided the interval [10.0,110.0] into five subintervals with
equal lengths of 20.0. Then we generated pl%, l = 1, ..., 5, from
the total configurations with objective function value uniformly
distributed in subinterval l. we allocate fewer points in the first
interval (“good interval”) than in others.
3.Each sample of objective function for configuration i is generated
according to H(i) = g(i) +Wi , where Wi models the behavior of a
Monte Carlo simulator. For these experiments, we take
Wi ∼ unif [a/2, a/2]∀i ∈ S .
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Comparison of the SC and SR algorithms

SC:
1.Mk = 1 + k/500
2.R(i , j) = 1/999999∀i , j ∈ S , i ̸= j
SR:
1.Mk = 1 + k/500
2.(a, b)unif [0, 120]
3.two sets of experiments, one with a “closed neighborhood
structure” and one with an “open neighborhood structure.”
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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• SC converges to a good solution very quickly, even when the
estimates of the objective function are very noisy

• As can be seen from the figures, the SC algorithm performs
much better than the SR algorithm on the particular
optimization problem examined.
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Thank you!
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