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Original Simulated Annealing Algorithm
Algorithm
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Original Simulated Annealing Algorithm

Most studies have focused on determining an appropriate annealing
schedule

Tk = C
ln(1+k) , ∀k ∈ N

The convergence depends on C , but C is generally unknown in
practice

Assuming that the objective function values can be evaluated exactly.

Using the state that is visited by the algorithm in iteration k as the
estimated optimal solution in that iteration
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Modified Simulated Annealing Algorithm

estimates of the objective function values will be used throughout
since exact objective function values are not available

the state that is visited most often by the algorithm (divided by a
normalizer)

the state that has the best average estimated objective function value

not require the Markov chain generated by our algorithm to converge
to the set of global optimal solutions

not restrict the temperature to decrease to 0 (more aggressive)
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Formulation

The discrete stochastic optimization problem can be presented as

min
x∈ϕ

f (x) = min
x∈ϕ

E [h(x ,Yx)]

where Yx is a r.v. Denote ϕ∗ as the set of global optimal solutions.
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The 1st Approach
Assumptions
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The 1st Approach
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The 1st Approach

Notations:

Xk : the current state after k iterations

Vk(x): the number of times the Markov chain {Xk} has visited state
x in the first k iterations for all x ∈ ϕ

X ∗
k : the state that maximizes Vk (x)

D(x) , where D(x) is the normalizer
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The 1st Approach
Algorithm
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The 1st Approach
Transition Probability Matrices

Pk


x , x ′


= P


Xk+1 = x ′ | Xk = x



=






R (x , x ′)P

Uk ≤ Gx ,x ′(k)


if x ′ ∈ N(x),

1−


y∈N(x) Pk(x , y) if x ′ = x ,

0 otherwise
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The 1st Approach
Transition Probability Matrices And Stationary Distribution
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The 1st Approach
Proposition 2

Proposition 2

Under Assumptions 1 through 3, the transition probability matrix P given
in Equation (8) is irreducible and aperiodic and has stationary distribution
π, where π is a vector whose entries πx are given in Equation (9).
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The 1st Approach
Proposition 2
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The 1st Approach
Proposition 3

Proposition 3

Suppose that Assumptions 4 and 5 are satisfied and that ϕ is finite. Then
Pk(x , x

′) → P(x , x ′) as k → ∞ for all x , x ′ ∈ ϕ, where the Markov
matrices Pk and P are given in Equations (7) and (8), respectively
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The 1st Approach
Proposition 3

Proof:

lim
k→∞

Pk


x , x ′



=R

x , x ′


lim
k→∞

E



exp





−

f̂k (x

′)− f̂k(x)
+

T









=R

x , x ′


E



 lim
k→∞

exp




−

f̂k (x

′)− f̂k(x)
+

T









=R

x , x ′


E



exp




− [f (x ′)− f (x)]+



T







 = P

x , x ′
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The 1st Approach
Theorem 4

Theorem 4

Under Assumptions 1 through 5 , the sequence {X ∗
k } generated by

Algorithm 1 converges almost surely to the set ϕ∗ (in the sense that there
exists a set A such that P(A) = 1 and for all ω ∈ A, there exists Kω > 0
such that X ∗

k (ω) ∈ ϕ∗ for all k ≥ Kω ).
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The 1st Approach
Theorem 4

Proof: By Lemma 1 (let Dk = Xk for all k ∈ N and g(d) = I{d=x} for all
d ∈ ϕ), we have that

Vk(x)

kD(x)
=

1

D(x)
× 1

k

k

i=0

I{Xi=x} →
πx

D(x)
a.s. as k → ∞

for all x ∈ ϕ, where Vk(x), x ∈ ϕ. It is clear that πx > 0 for all x ∈ ϕ so
that Equation (9) yields

πy/D(y)

πx/D(x)
= exp


−[f (y)− f (x)]

T



for all x , y ∈ ϕ. Therefore, πy/D(y) ≤ πx/D(x) if and only if f (y) ≥ f (x).
This shows that

arg max
x∈ϕ

πx
D(x)

= ϕ∗
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The 2rd Approach

This variant uses the same mechanism for moving around the state
space as Algorithm 1 but a different approach for estimating the
optimal solution.

Selecting the state with the best average estimated objective function
value obtained from all the previous estimates to be the estimated
optimal solution

Assumption 5’: {Lk} is a sequence of positive integers satisfying
limk→∞Lk = L ≤ ∞
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The 2rd Approach
Algorithm
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The 2rd Approach
Theorem 5

Theorem 5

Suppose that Assumptions 1, 2, 3, 4 and 5’ are satisfied , the sequence
{X ∗

k } generated by Algorithm 2 converges almost surely to the set ϕ∗ (in
the sense that there exists a set A such that P(A) = 1 and for all ω ∈ A,
there exists Kω > 0 such that X ∗

k (ω) ∈ ϕ∗ for all k ≥ Kω ).
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The 2rd Approach
Theorem 5

Proof:
(i) L = ∞
Pk → P , P is irreducible and aperiodic and has the stationary distribution
π. Since ϕ is finite, πx > 0 for all x ∈ ϕ.
By Lemma 1, Vk (x)

k → πx > 0 a.s. as k → ∞ for for all x ∈ ϕ
⇒ Vk(x) → ∞ as k → ∞ for for all x ∈ ϕ. Clearly, Ck(x) ≥ Vk(x)− 1
⇒ Ck(x) → ∞a.s. as k → ∞ for for all x ∈ ϕ

⇒ Ak (x)
Ck (x)

→ f (x) a.s. as k → ∞ for for all x ∈ ϕ
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The 2rd Approach
Theorem 5

Proof:
(ii) L < ∞, Pk(x , x

′) → P ′(x , x ′)
Firstly, we show that P ′ is irreducible
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Then, we show that P ′ is aperiodic
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Comparison

Algorithm 2 will converge to the set of global optimal solutions to the
optimization problem more rapidly than Algorithm 1

Algorithm 2 is expected to obtain a good estimate of the optimal
solution quickly. Since Algorithm 2 selects the state in ϕ that has the
best objective function value among the states that have been visited
by the algorithm so far to be the estimate of the optimal solution.
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Thanks!
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