A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization

Nifei Lin

November 2021

Nifei Lin

A Simulated Annealing Algorithm with Const

November 2021 1 / 31

- Original Simulated Annealing Algorithm
- A Modified Simulated Annealing Algorithm for Noisy Functions
- Another Variant of the Modified Simulated Annealing Algorithm

Original Simulated Annealing Algorithm

Original Simulated Annealing Algorithm Algorithm

PROCEDURE SIMULATED ANNEALING

begin

INITIALIZE; M := 0;

repeat

repeat

PERTURB(config. $i \rightarrow \text{config. } j, \Delta C_{ij}$); if $\Delta C_{ij} \leq 0$ then accept else if $\exp(-\Delta C_{ij}/c) > \text{random}[0,1)$ then accept; if accept then **UPDATE**(configuration j);

until equilibrium is approached sufficiently closely;

$$c_{M+1} := f(c_M);$$

$$M := M + 1;$$

until stop criterion = true (system is 'frozen'); end.

- Most studies have focused on determining an appropriate annealing schedule
- $T_k = \frac{C}{\ln(1+k)}, \forall k \in N$
- The convergence depends on *C*, but *C* is generally unknown in practice
- Assuming that the objective function values can be evaluated exactly.
- Using the state that is visited by the algorithm in iteration k as the estimated optimal solution in that iteration

- estimates of the objective function values will be used throughout since exact objective function values are not available
- the state that is visited most often by the algorithm (divided by a normalizer)
- the state that has the best average estimated objective function value
- not require the Markov chain generated by our algorithm to converge to the set of global optimal solutions
- not restrict the temperature to decrease to 0 (more aggressive)

The discrete stochastic optimization problem can be presented as

$$\min_{x\in\varphi}f(x)=\min_{x\in\varphi}E[h(x,Y_x)]$$

where Y_x is a r.v. Denote φ^* as the set of global optimal solutions.

DEFINITION 1. For each $x \in \mathcal{G}$, there exists a subset N(x) of $\mathcal{G} \{x\}$, which is called the set of neighbors of x.

ASSUMPTION 1. For any $x, x' \in \mathcal{G}, x'$ is reachable from x; i.e., there exists a finite sequence $\{n_i\}_{i=0}^l$ for some l, such that $x_{n_0} = x, x_{n_i} = x'$, and $x_{n_{i+1}} \in N(x_{n_i}), i = 0,$ $1, 2, \ldots, l - 1.$

Let $R': \mathscr{G} \times \mathscr{G} \to [0, \infty)$ be a function and for all $x \in \mathscr{G}$, define $D(x) = \sum_{x' \in \mathscr{G}} R'(x, x')$ and

$$R(x, x') = \frac{R'(x, x')}{D(x)},$$
 (4)

Assumption 2. Let the transition probability R(x, x') be defined as in Equation (4) and let N satisfy Definition 1. Then we assume that:

1. $R': \mathcal{G} \times \mathcal{G} \rightarrow [0, \infty)$ satisfies $R'(x, x') > 0 \Leftrightarrow x' \in N(x)$, and

2. R'(x, x') = R'(x', x), for each $x, x' \in \mathcal{G}$.

Assumption 3. The feasible region \mathcal{G} is a finite set containing at least two states and the set of all global optimal solutions \mathcal{G}^* is a proper subset of \mathcal{G} .

Assumption 4. The temperature T is a positive (constant) real number.

Assumption 5. Let $\{L_k\}$ be a sequence of positive integers such that $L_k \to \infty$ as $k \to \infty$.

Image: A = 1 = 1

э

LEMMA 1. (ANDRADÓTTIR (1995), LEMMA 3.1). Suppose that $\{D_k\}$ is a nonhomogeneous Markov chain with a finite state space \mathcal{S} and with $P\{D_{k+1} = d \mid D_0, \ldots, D_k\}$ = $P_k(D_k, d)$ for all $d \in \mathcal{S}$ and $k \in \mathbb{N}$, where $P_k(x, x') \rightarrow P(x, x')$ as $k \rightarrow \infty$ for all $x, x' \in \mathcal{S}$ and P is an irreducible and aperiodic Markov matrix. If $g: \mathcal{S} \rightarrow \mathbb{R}$, then

$$(1/K)\sum_{k=1}^{K}g(D_k) \to \sum_{d \in \mathcal{G}}\pi_d g(d)$$

a.s. as $K \to \infty$, where π is the steady-state distribution corresponding to P.

Notations:

- X_k : the current state after k iterations
- V_k(x): the number of times the Markov chain {X_k} has visited state x in the first k iterations for all x ∈ φ
- X_k^* : the state that maximizes $\frac{V_k(x)}{D(x)}$, where D(x) is the normalizer

Parameters: R, N, T, $\{L_k\}$. **Step 0:** Select a starting point $X_0 \in \mathcal{G}$. Let $V_0(X_0) = 1$ and $V_0(x) = 0$, for all $x \in \mathcal{G}$, $x \neq X_0$. Let k = 0 and $X_k^* = X_0$. **Step 1:** Given $X_k = x$, choose $Z_k \in N(x)$ such that $P[Z_k = z | X_k = x] = R(x, z)$ for all $z \in N(x)$, where $N(\cdot)$ is defined in Definition 1 and $R(\cdot, \cdot)$ is given in Equation (4). **Step 2:** Given $X_k = x$ and $Z_k = z$, generate independent, identically distributed, and unbiased observations $Y_z(1)$, $Y_z(2), \ldots, Y_z(L_k)$ of Y_z and $Y_x(1), Y_y(2), \ldots, Y_z(L_k)$

of
$$Y_x$$
. Compute $\hat{f}_{L_k}(x)$ and $\hat{f}_{L_k}(z)$ as follows:

$$\hat{f}_{L_k}(s) = \frac{1}{L_k} \sum_{i=1}^{L_k} h(s, Y_s(i)) \quad \text{for } s = x, z.$$
 (5)

Step 3: Given $X_k = x$ and $Z_k = z$, generate $U_k \sim U[0, 1]$, and set

$$X_{k+1} = \begin{cases} Z_k & \text{if } U_k \leq G_{x,z}(k), \\ X_k & \text{otherwise,} \end{cases}$$

where

$$G_{x,z}(k) = \exp\left[\frac{-[\hat{f}_{L_k}(z) - \hat{f}_{L_k}(x)]^+}{T}\right].$$
 (6)

Step 4: Let k = k + 1, $V_k(X_k) = V_{k-1}(X_k) + 1$, and $V_k(x) = V_{k-1}(x)$, for all $x \in \mathcal{G}$, $x \neq X_k$. If $V_k(X_k)/D(X_k) > V_k(X_{k-1}^*)/D(X_{k-1}^*)$, then let $X_k^* = X_k$; otherwise let $X_k^* = X_{k-1}^*$. Go to Step 1.

- 4 回 ト - 4 三 ト

$$P_{k}(x, x') = P \{X_{k+1} = x' \mid X_{k} = x\}$$

=
$$\begin{cases} R(x, x') P \{U_{k} \leq G_{x, x'}(k)\} & \text{if } x' \in N(x), \\ 1 - \sum_{y \in N(x)} P_{k}(x, y) & \text{if } x' = x, \\ 0 & \text{otherwise} \end{cases}$$

э.

э

• • • • • • • • • •

The 1st Approach Transition Probability Matrices And Stationary Distribution

P(x, x')

$$= \begin{cases} R(x, x') \exp\left[\frac{-[f(x') - f(x)]^+}{T}\right] & \text{if } x' \in N(x), \\ 1 - \sum_{y \in N(x)} P(x, y) & \text{if } x' = x, \\ 0 & \text{otherwise,} \end{cases}$$
(8)

and let π_x be defined as follows:

$$\pi_{x} = \frac{D(x) \exp\left[\frac{-f(x)}{T}\right]}{\sum_{x' \in \mathcal{F}} D(x') \exp\left[\frac{-f(x')}{T}\right]}$$
(9)

< 1 k

Proposition 2

Under Assumptions 1 through 3, the transition probability matrix P given in Equation (8) is irreducible and aperiodic and has stationary distribution π , where π is a vector whose entries π_x are given in Equation (9).

PROOF. The proof of irreducibility follows directly from Assumptions 1 and 2 and Equation (8). The proof that π is the stationary distribution of P can be found in Proposition 3.1 in Mitra et al. (1986). To prove aperiodicity, note that by Assumption 3, $\mathcal{G}^* \neq \mathcal{G}$, so by Assumption 1 there exist $x^* \in \mathcal{G}^*$ and $x \in N(x^*)$ with $f(x^*) < f(x)$. Therefore, from the definition of P given in Equation (8) and the definition of R given in Equation (4), $P(x^*, x^*) > 0$ and therefore, P is aperiodic. \Box

Proposition 3

Suppose that Assumptions 4 and 5 are satisfied and that φ is finite. Then $P_k(x, x') \rightarrow P(x, x')$ as $k \rightarrow \infty$ for all $x, x' \in \varphi$, where the Markov matrices P_k and P are given in Equations (7) and (8), respectively

The 1st Approach Proposition 3

Proof:

$$\lim_{k \to \infty} P_k(x, x')$$

$$= R(x, x') \lim_{k \to \infty} E\left[\exp\left[\frac{-\left[\hat{f}_k(x') - \hat{f}_k(x)\right]^+\right]}{T}\right]\right]$$

$$= R(x, x') E\left[\lim_{k \to \infty} \exp\left[\frac{-\left[\hat{f}_k(x') - \hat{f}_k(x)\right]^+}{T}\right]\right]$$

$$= R(x, x') E\left[\exp\left[\frac{-\left[f(x') - f(x)\right]^+\right]}{T}\right]\right] = P(x, x')$$

2

A D N A B N A B N A B N

Theorem 4

Under Assumptions 1 through 5, the sequence $\{X_k^*\}$ generated by Algorithm 1 converges almost surely to the set φ^* (in the sense that there exists a set A such that P(A) = 1 and for all $\omega \in A$, there exists $K_{\omega} > 0$ such that $X_k^*(\omega) \in \varphi^*$ for all $k \ge K_{\omega}$).

The 1st Approach

Proof: By Lemma 1 (let $D_k = X_k$ for all $k \in \mathbb{N}$ and $g(d) = I_{\{d=x\}}$ for all $d \in \varphi$), we have that

$$\frac{V_k(x)}{kD(x)} = \frac{1}{D(x)} \times \frac{1}{k} \sum_{i=0}^k I_{\{X_i = x\}} \to \frac{\pi_x}{D(x)} \quad \text{ a.s. as } k \to \infty$$

for all $x \in \varphi$, where $V_k(x), x \in \varphi$. It is clear that $\pi_x > 0$ for all $x \in \varphi$ so that Equation (9) yields

$$\frac{\pi_y/D(y)}{\pi_x/D(x)} = \exp\left[\frac{-[f(y) - f(x)]}{T}\right]$$

for all $x, y \in \varphi$. Therefore, $\pi_y/D(y) \le \pi_x/D(x)$ if and only if $f(y) \ge f(x)$. This shows that

$$\arg\max_{x\in\varphi}\frac{\pi_x}{D(x)}=\varphi^*$$

- This variant uses the same mechanism for moving around the state space as Algorithm 1 but a different approach for estimating the optimal solution.
- Selecting the state with the best average estimated objective function value obtained from all the previous estimates to be the estimated optimal solution

Assumption 5': $\{L_k\}$ is a sequence of positive integers satisfying $\lim_{k\to\infty} L_k = L \le \infty$

Parameters: R, N, T, $\{L_k\}$. **Step 0:** Select a starting point $X_0 \in \mathcal{G}$. For all $x \in \mathcal{G}$, let $A_0(x) = 0$ and $C_0(x) = 0$. Let k = 0 and $X_k^* = X_0$. Step 1: Identical to Step 1 of Algorithm 1. **Step 2:** Given $X_k = x$ and $Z_k = z$, generate independent, identically distributed, and unbiased observations $Y_{-}(1)$. $Y_{2}(2), \ldots, Y_{2}(L_{k})$ of Y_{2} and $Y_{2}(1), Y_{2}(2), \ldots, Y_{2}(L_{k})$ of Y_{2} . *Compute* $\hat{f}_{L_s}(x)$ and $\hat{f}_{L_s}(z)$ as in Equation (5) for s = x, z. Let $C_{k+1}(s) = C_k(s) + L_k$ and $A_{k+1}(s) = A_k(s) + L_k \hat{f}_{L_k}(s)$ for s = x, z. Moreover, let $C_{k+1}(x') = C_k(x')$ and $A_{k+1}(x')$ $= A_{\iota}(x')$ for all $x' \in \mathcal{G}, x' \neq x, z$. **Step 3:** *Identical to Step 3 of Algorithm 1.* **Step 4:** Let k = k + 1 and select $X_k^* \in \arg \min_{x \in \mathcal{G}}$ $A_k(x)/C_k(x)$ (use the convention $0/0 = +\infty$). Go to Step 1.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 5

Theorem 5

Suppose that Assumptions 1, 2, 3, 4 and 5' are satisfied , the sequence $\{X_k^*\}$ generated by Algorithm 2 converges almost surely to the set φ^* (in the sense that there exists a set A such that P(A) = 1 and for all $\omega \in A$, there exists $K_{\omega} > 0$ such that $X_k^*(\omega) \in \varphi^*$ for all $k \ge K_{\omega}$).

Theorem 5

Proof: (i) $L = \infty$ $P_k \rightarrow P$, P is irreducible and aperiodic and has the stationary distribution π . Since φ is finite, $\pi_x > 0$ for all $x \in \varphi$. By Lemma 1, $\frac{V_k(x)}{k} \rightarrow \pi_x > 0$ a.s. as $k \rightarrow \infty$ for for all $x \in \varphi$ $\Rightarrow V_k(x) \rightarrow \infty$ as $k \rightarrow \infty$ for for all $x \in \varphi$. Clearly, $C_k(x) \ge V_k(x) - 1$ $\Rightarrow C_k(x) \rightarrow \infty$ a.s. as $k \rightarrow \infty$ for for all $x \in \varphi$ $\Rightarrow \frac{A_k(x)}{C_k(x)} \rightarrow f(x)$ a.s. as $k \rightarrow \infty$ for for all $x \in \varphi$

The 2rd Approach

Theorem 5

Proof: (ii) $L < \infty$, $P_k(x, x') \rightarrow P'(x, x')$ Firstly, we show that P' is irreducible

$$P'(x, x') = P\{X_{k+1} = x' \mid X_k = x\}$$

$$= \begin{cases} R(x, x')p'_{x,x'} & x' \in N(x), \\ 1 - \sum_{y \in N(x)} P'(x, y) & \text{if } x' = x, \\ 0 & \text{otherwise,} \end{cases}$$

$$p'_{x,x'} = E[\exp[-[\hat{f}(x') - \hat{f}(x)]^+ / T]], \text{ and } \hat{f}(s)$$

$$= (1/L) \sum_{i=1}^{L} h(s, Y_s(i)) \text{ for } s = x, x'.$$
By Jensen's inequality, we have that
$$p'_{x,x'} \ge \exp\left[\frac{-1}{T} E[\hat{f}(x') - \hat{f}(x)]^+\right]$$

$$\ge \exp\left[\frac{-1}{T} E[|\hat{f}(x')| + |\hat{f}(x)|]\right]$$

$$> 0,$$

A Simulated Annealing Algorithm with Const

э

< ∃⇒

Then, we show that P' is aperiodic

$$P'(x, x) = 0, \ \forall x \in \mathcal{G}$$

$$\Leftrightarrow \sum_{x' \in N(x)} P'(x, x') = 1, \ \forall x \in \mathcal{G}$$

$$\Leftrightarrow E\left[\exp\left[\frac{-[\hat{f}(x') - \hat{f}(x)]^{+}}{T}\right]\right] = 1,$$

$$\forall x \in \mathcal{G}, x' \in N(x)$$

$$\Leftrightarrow \exp\left[\frac{-[\hat{f}(x') - \hat{f}(x)]^{+}}{T}\right] = 1 \text{ a.s.},$$

$$\forall x \in \mathcal{G}, x' \in N(x)$$

$$\Leftrightarrow \hat{f}(x') - \hat{f}(x) \le 0 \text{ a.s.}, \ \forall x \in \mathcal{G}, x' \in N(x)$$

$$\Leftrightarrow \hat{f}(x') = \hat{f}(x) \text{ a.s.}, \ \forall x \in \mathcal{G}, x' \in N(x)$$

$$\Leftrightarrow \hat{f}(x') = \hat{f}(x) \text{ a.s.}, \ \forall x, x' \in \mathcal{G}$$

$$\Leftrightarrow f(x') = f(x), \ \forall x, x' \in \mathcal{G}.$$

Image: A mathematical states and a mathem

æ

Since this contradicts Assumption 3, we have shown that P' is aperiodic.

Since $P_k \to P'$ as $k \to \infty$, where P' is irreducible and aperiodic and P' has a stationary distribution r, with $r_x > 0$ for all $x \in \mathcal{G}$, by Lemma 1, $V_k(x)/k \to r_x > 0$ a.s. as $k \to \infty$ for all $x \in \mathcal{G}$. This implies that $V_k(x) \to \infty$ a.s. as $k \to \infty$ for all $x \in \mathcal{G}$. The rest of the proof is similar to the proof for the case $L = \infty$. \Box

- Algorithm 2 will converge to the set of global optimal solutions to the optimization problem more rapidly than Algorithm 1
- Algorithm 2 is expected to obtain a good estimate of the optimal solution quickly. Since Algorithm 2 selects the state in φ that has the best objective function value among the states that have been visited by the algorithm so far to be the estimate of the optimal solution.

Thanks!

- ∢ ⊒ →

æ

Image: A math a math