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@ Original Simulated Annealing Algorithm
@ A Modified Simulated Annealing Algorithm for Noisy Functions
@ Another Variant of the Modified Simulated Annealing Algorithm
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Original Simulated Annealing Algorithm

Algorithm

PROCEDURE SIMULATED ANNEALING
begin
INITIALIZE;
M := 0;
repeat
repeat
PERTURB (config. ¢ — config. j,ACy;);
if AC;; < 0 then accept else
if exp(—ACi;j/c) > random|0,1) then accept;
if accept then UPDATE((configuration j);

until equilibrium is approached sufficiently closely;

em+1 = flem);
M:=M+1;

until stop criterion = true (system is ‘frozen’);
end.
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Original Simulated Annealing Algorithm

@ Most studies have focused on determining an appropriate annealing

schedule
__C

] Tk = m, Vk € N

@ The convergence depends on C, but C is generally unknown in
practice

@ Assuming that the objective function values can be evaluated exactly.

@ Using the state that is visited by the algorithm in iteration k as the
estimated optimal solution in that iteration
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Modified Simulated Annealing Algorithm

@ estimates of the objective function values will be used throughout
since exact objective function values are not available

@ the state that is visited most often by the algorithm (divided by a
normalizer)

@ the state that has the best average estimated objective function value

@ not require the Markov chain generated by our algorithm to converge
to the set of global optimal solutions

@ not restrict the temperature to decrease to 0 (more aggressive)
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Formulation

The discrete stochastic optimization problem can be presented as

min £(x) min E[h(x, Yx)]

Xep o xX€

where Y, is a r.v. Denote ¢* as the set of global optimal solutions.
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The 1st Approach

Assumptions

DEerINITION 1. For each x € &, there exists a subset
N(x) of $\{x}, which is called the set of neighbors of x.

AssumpTION 1. For any x, x' € &, x' is reachable
from x; i.e., there exists a finite sequence {n },_, for some I,
such that x, = x, x, = x',and x, € N(x,),i =0,
1,2,...,1 -1

Let R":¥ X ¥ — [0, =) be a function and for all x
€ ¥, define D(x) = 2,4 R'(x, x') and

R'(x, x')

R(x, x') = Da) 4)
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The 1st Approach

Assumptions

AsSUMPTION 2. Let the transition probability R(x, x")
be defined as in Equation (4) and let N satisfy Definition 1.
Then we assume that:

1. R":¥ X ¥ — [0, =) satisfies R'(x, x') > 0 & x'
€ N(x), and

2. R'(x, x') = R'(x', x), for each x, x' € &.

AssuMPTION 3. The feasible region ¥ is a finite set

containing at least two states and the set of all global
optimal solutions ¥* is a proper subset of <.
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The 1st Approach

Assumptions

AssuUMPTION 4. The temperature T is a positive (con-
stant) real number.

AssuMPTION 5. Let {L,} be a sequence of positive
integers such that L, — % as k — .
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The 1st Approach

LemMA 1. (ANDRADOTTIR (1995), LEMMA 3.1). Sup-
pose that {D,} is a nonhomogeneous Markov chain with a
finite state space ¥ and with P{D,,, = d|D,, ..., D}
= P(D,, d) foralld € ¥ and k € N, where P,(x, x') —
P(x,x")ask — o forall x, x' € ¥ and P is an irreducible
and aperiodic Markov matrix. If g:¥ — R, then

(1/K)Z;. 8(Dy) = 2, gm,g(d)

as. as K — o, where  is the steady-state distribution
corresponding to P.
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The 1st Approach

Notations:
@ Xy: the current state after k iterations

@ Vi(x): the number of times the Markov chain { Xy} has visited state

x in the first k iterations for all x € ¢

e X;: the state that maximizes ‘g((;)), where D(x) is the normalizer
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The 1st Approach

Algorithm

Parameters: R, N, T, {L,}.

Step 0: Select a starting point X, € &. Let V((X,) = 1
and Vo(x) = 0, forallx € ¥, x # X,. Let k = 0 and
X; = X,

Step 1: Given X, = x, choose Z, € N(x) such that P[Z,
= z|X, = x] = R(x, z) for all z € N(x), where N(-)
is defined in Definition 1 and R( + , + ) is given in
Equation (4).

Step 2: Given X, = x and Z, = z, generate independent,
identically distributed, and unbiased observations Y ,(1),
Y.(2), ..., Y (L) ofY,and Y (1), Y (2), ..., Y (L))
of Y,. Compute f, (x) and f, (z) as follows:

Lk

Frls) = Ll > h(s, Y{(i)) fors=x,z.  (5)
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The 1st Approach

Algorithm

Step 3: Given X, = x and Z, = z, generate U, ~ U[0, 1],
and set

X = Z, if Up = G, (k),
k+1 7 1 X, otherwise,

where

_[ka(Z) _ka(x)r] . ©)

G,.(k) = exp[ T

Step d: Let k =k + 1, V(X,) = V.. ((X,) + 1, and
Vix) = Vi, (x), for all x € &, x # X,. If
ViX)/D(X;) > V(Xi)/D(Xi.,), then let Xi =
X,; otherwise let X; = Xj_,. Go to Step 1.

Nifei Lin
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The 1st Approach

Transition Probability Matrices

Pk (X,X/) = P{Xk+1 = X/ | Xk = X}
R(x,xX") P{Ux < Gex(k)} if X' € N(x),

=4 1= eng Pr(x,y) if X' = x,
0 otherwise
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The 1st Approach

Transition Probability Matrices And Stationary Distribution

P(x, x")

R(x, x/) exp[w] ifx' € N(x)l

T

1_2yEN(x) P(xl y) ifx" = X,

0 otherwise,
®)

and let 7, be defined as follows:
D(x) exp[ —fT(x)]
Tx = 7 &)
—f(x
2yey D(x') eXp[ f(T )]
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The 1st Approach

Proposition 2

Proposition 2

Under Assumptions 1 through 3, the transition probability matrix P given
in Equation (8) is irreducible and aperiodic and has stationary distribution
7, where 7 is a vector whose entries 7, are given in Equation (9).
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The 1st Approach

Proposition 2

Proor. The proof of irreducibility follows directly
from Assumptions 1 and 2 and Equation (8). The proof
that 7 is the stationary distribution of P can be found
in Proposition 3.1 in Mitra et al. (1986). To prove
aperiodicity, note that by Assumption 3, * # ¢, so by
Assumption 1 there exist x* € ¥* and x € N(x*) with
f(x*) < f(x). Therefore, from the definition of P given
in Equation (8) and the definition of R given in
Equation (4), P(x*, x*) > 0 and therefore, P is
aperiodic. O
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The 1st Approach

Proposition 3

Proposition 3

Suppose that Assumptions 4 and 5 are satisfied and that ¢ is finite. Then
Pi(x,x") — P(x,x") as k — oo for all x,x" € ¢, where the Markov
matrices Py and P are given in Equations (7) and (8), respectively
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The 1st Approach
Proposition 3

Proof:

lim Py (x,x')

k—o0

=R (x,x') klim E |exp
—00

— / 1
=R (X,X) E k||_>moo exp

N [f-(X’) — )]
:R(X,X/)E exp{ }]] :P(X,x')
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The 1st Approach

Theorem 4

Theorem 4

Under Assumptions 1 through 5 , the sequence {X}'} generated by
Algorithm 1 converges almost surely to the set ¢* (in the sense that there
exists a set A such that P(A) =1 and for all w € A, there exists K,, > 0
such that X/(w) € ¢* for all k > K,, ).
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The 1st Approach

Theorem 4

Proof: By Lemma 1 (let Dx = X for all k € N and g(d) = I{g—,; for all
d € ), we have that

Vk(X) - 1 1
KD(x) ~ D) EE% X}—> ) a.s. as k — oo

for all x € ¢, where Vi (x),x € . It is clear that 7, > 0 for all x € ¢ so
that Equation (9) yields

/D) _ _[~If(y) = f()
7/D(x) "[ T }

for all x,y € ¢. Therefore, m,/D(y) < m«/D(x) if and only if f(y) > f(x).
This shows that

Tx &
8 2 D < ¢
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The 2rd Approach

@ This variant uses the same mechanism for moving around the state
space as Algorithm 1 but a different approach for estimating the
optimal solution.

@ Selecting the state with the best average estimated objective function
value obtained from all the previous estimates to be the estimated
optimal solution

Assumption 5': {Ly} is a sequence of positive integers satisfying
/imk_moLk =1L < oo
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The 2rd Approach

Algorithm

Parameters: R, N, T, {L,}.
Step 0: Select a starting point X, € ¥. Forallx € &, let
Ay(x) = 0and Cy(x) = 0. Let k = 0 and X; = X,.

Step 1: Identical to Step 1 of Algorithm 1.
Step 2: Given X, = x and Z, = z, generate independent,
identically distributed, and unbiased observations Y (1),
Y,(2),...,Y,(L)of Y,and Y, (1), Y,(2),..., Y (L) of Y,.
Computef, (x) and f, (2) as in Equation (5) for s = x, z. Let
Ciin(s) = Cils) + Ly and Ay4(s) = Ails) + Lika(S)for 5
= x, z. Moreover, let C,,,(x") = C(x') and A, (x)
=A(X) forallx' €S, x" # x, z.

Step 3: Identical to Step 3 of Algorithm 1.

Step 4: Let k = k + 1 and select Xi € arg min,.,
A (x)/ C(x) (use the convention 0/0 = +). Go to Step 1.
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The 2rd Approach

Theorem 5

Suppose that Assumptions 1, 2, 3, 4 and 5’ are satisfied , the sequence
{X;} generated by Algorithm 2 converges almost surely to the set ¢* (in
the sense that there exists a set A such that P(A) =1 and for all w € A,
there exists K,, > 0 such that X (w) € ¢* for all k > K, ).
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The 2rd Approach

Theorem 5

Proof:

(i) L=o0

Py — P, P is irreducible and aperiodic and has the stationary distribution
m. Since ¢ is finite, m, > 0 for all x € .

By Lemma 1, Vk(X) — ¢ >0 a.s. as k — oo for for all x €

= Vi(x) = o0 as k — oo for for all x € ¢. Clearly, Ci(x) > Vi(x) —1
= Ck(x) — ooa.s. as k — oo for for all x € ¢

= Ckgxg — f(x) a.s. as k — oo for for all x € ¢
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The 2rd Approach

Theorem 5

Proof:
(i) L < oo, Pr(x,x") = P'(x,x")
Firstly, we show that P’ is irreducible

P'(x, x') = P{Xis1 = x' | X = x}

R(x, x")pix x' € N(x),
={ 1-Zene P'(x,y) ifx'=x, (11)
0 otherwise,

ple = Elexp[-[f(x') — Ax)1'/T]], and f(s)
= (1/L) 2L, h(s, Y,(i)) for s = x, x'.
By Jensen'’s inequality, we have that

-1
Pax = eXP[T E[f(x") —f(x)]*]

-1
= exp[T E[If(x")| + If(x)l]]

>0,
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Then, we show that P’ is aperiodic

P'(x,x)=0, Vxe€¥
& Y P(x,x)=1, VxEY

X' EN(x)

-[f) —f(x)]*H .

@E[exp[ T

Vxe¥, x' € Nx)

@exp[_[ﬂx—l);fﬂ] =1as,

Vxe ¥, x' € N(x)
Sf(x') —f(x)=0as, VxE ¥, x' € N(x)
Sf(x") = f(x) as, VxE€Z, x' € N(x)
of(x') = f(x) as, ¥x, x' €F
Sf(x') =f(x), Vx,x' €.
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Since this contradicts Assumption 3, we have shown
that P’ is aperiodic.

Since P, — P’ as k — «, where P’ is irreducible and
aperiodic and P’ has a stationary distribution 7, with
r,>0forallx € ¥, by Lemmal, V (x)/k —r, >0
a.s.as k — « for all x € &. This implies that V (x) —
© a.s. as k — o« for all x € ¥. The rest of the proof is
similar to the proof for the case L = ». 0O
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Comparison

@ Algorithm 2 will converge to the set of global optimal solutions to the
optimization problem more rapidly than Algorithm 1

@ Algorithm 2 is expected to obtain a good estimate of the optimal
solution quickly. Since Algorithm 2 selects the state in ¢ that has the
best objective function value among the states that have been visited
by the algorithm so far to be the estimate of the optimal solution.
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Thanks!
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