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Random Search Algorithms for DOvS

I Nelder-Mead Simplex Modifications (1996, MS)
I Stochastic Ruler (1992, SIAM J. OPTIM.)
I Simulated Annealing (1999, MS)
I Stochastic Comparison (1999, SIAM J. OPTIM.)
I Nested Partition* (2000, OR; 2003, TOMACS)
I COMPASS (2006, OR)
I Framework for LCRS Algorithms (2007, TOMACS)
I Industrial Strength COMPASS (2010, TOMACS)
I AHA (2013, JOC)
I EEE, MRAS, GPS...
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Industrial Strength COMPASS (ISC)

ISC solves linearly constrained DOvS problems with a finite
solution space. The framework consists of three phases:
I The global search phase explores the feasible solution space

and identifies promising regions for intensive local search.(a
niching genetic algorithm)

I The local search phase investigates these regions and may
return multiple locally optimal solutions. (COMPASS with
constraint pruning)

I The cleanup phase then selects the best among these local
optima and estimates the objective value with controlled
error. (Two-stage R&S procedure)

ISC dramatically slows down when dimensionality
increases beyond 10. The slowdown of ISC is due to
COMPASS’ behavior in higher-dimensional spaces.
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The Problem

Minimize g(x) = E[G(x)]

Subject to x ∈ Θ = Φ ∩L D
(1)

I assume the sample mean of observations of G(x) is a
strongly consistent estimator of g(x) = E[G(x)].

I Φ is convex and compact, and L D denotes the
D-dimensional integer lattice. Therefore Θ is finite.
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Local Neighborhood/Minimum, LCRS

local neighborhood
Let N (x) = {y : y ∈ Θ and ‖x− y‖ = 1} be the local
neighborhood of x ∈ Θ, where ‖x− y‖ denotes the Euclidean
distance between x and y.

local minimum
x is a local minimum if x ∈ Θ and either N (x) = ∅ or
g(x) ≤ g(y) for all y ∈ N (x). Let M denote the set of local
minimizers of the function g in Θ.

locally convergent random search (LCRS)
Let x̂∗k be the sample best solution at the end of iteration k. An
algorithm is a LCRS algorithm if the infinite sequence
{x̂∗0, x̂∗1, . . .} generated by the algorithm converges with
probability 1 (w.p.1) to the set M in the sense that
Pr {x̂∗k /∈M infinitely often (i.o.) } = 0.
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|N (x)| ≤ 2D
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The Generic LCRS Algorithm

1. Let x0 be the starting solution. Set the iteration counter
k = 0. Let S0 = S (0) = {x0} and x̂∗0 = x0. Set E0 = {x0} .
Determine a0 (x0). Take a0 (x0) observations from x0, set
N0 (x0) = a0 (x0), and calculate Ḡ0 (x0).

2. Sampling: Let k = k + 1. Determine the MPA Ck and the
sampling distribution Fk on Ck. Sample mk solutions
xk1,xk2, . . . ,xkmk

from Ck using Fk. Remove any
duplicates from xk1,xk2, . . . ,xkmk

, and let Sk be the
remaining set. Let S (k) = S (k − 1) ∪Sk.

3. Estimation: Determine Ek ⊂ S (k) according to the
estimation scheme. For all x ∈ Ek, take ak(x) simulation
observations. Update Nk(x) and Ḡk(x). For all x /∈ Ck, let
Nk(x) = Nk−1(x) and Ḡk(x) = Ḡk−1(x).

4. Let x̂∗k = arg minx∈`k Ḡk(x). Go to Step 2.
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Review of Notations

I S (k): the set of all sampled solutions through iteration k.
I Sk: the set of unique sampled solutions on iteration k.
I Ck ⊆ Θ: the most promising area on iteration k.
I The estimation scheme chooses a subset of solutions Ek ⊆

C (k) and allocates ak(x) additional simulation observations
to all x ∈ Ek:
I Ek = S (k) in COMPASS
I Ek = Sk ∪

{
x̂∗
k−1

}
in AHA

I In these two cases, all sampled solutions are all estimated.
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Analysis of COMPASS as a LCRS

I C1 = Θ.
I Ek = S (k) so all sampled solutions are all estimated.
I Ck = {x : x ∈ Θ and∥∥x− x̂∗k−1

∥∥ ≤ ‖x− y‖,∀y ∈ S (k − 1)
}
for k > 1.

I uses a uniform distribution defined on Ck as the sampling
distribution Fk.

I mk = m.

When Θ is finite, COMPASS is locally convergent as long as
each sample mean Ḡk(x) satisfies a strong law of large numbers
and the estimation scheme guarantees that Nk(x) goes to
infinity as k →∞ for all x ∈ S (k).
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Constraint Pruning to Speed Up Sampling
The constraints defining the COMPASS MPA have the form(

x̂∗k−1 − xi

)′(
x−

x̂∗k−1 + xi

2

)
≥ 0, xi ∈ S (k − 1) (2)

Not all constraints are required to define Ck. Hong and Nelson
(2007) noted that to guarantee local convergence, it is sufficient
to drive Nk(x) to infinity only for those solutions xi ∈ S (k − 1)
that yield active constraints defining the MPA Ck.
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To determine whether solution xi ∈ S (k − 1) defines an active
constraint, Xu et al. (2010) showed that one can solve the
following LP:

min
x

(
x̂∗k−1 − xi

)′(
x−

x̂∗k−1 + xi

2

)
s.t.

(
x̂∗k−1 − xj

)′(
x−

x̂∗k−1 + xj

2

)
≥ 0

∀xj ∈ S (k − 1)\
{
x̂∗k−1

}
, j 6= i

(3)

The solution xi defines an active constraint if and only if the
objective function value is negative.
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COMPASS’ behavior in high-dimensional spaces
I COMPASS closes in on a locally optimal solution by

progressively adding linear constraints (to shrink
the MPA) that define the most promising area for
exploration.

I As dimension increases, the number of constraints that
COMPASS needs to define the most promising area with
visited solutions quickly increases, and sampling new
solutions from the most promising area is
time-consuming.

I COMPASS can employ constraint pruning. Constraint
pruning involves solving linear programs (LPs), and it is
needed much more frequently in high-dimensional
problems. it is essential to keep COMPASS from slowing
down in problems where it visits many solutions.

I The geometry of the COMPASS MPA is also an impediment
to solve large-dimension problems. (explained later)
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AHA as a LCRS

1. Let x0 be the starting solution. Set the iteration counter
k = 0. Let S0 = S (0) = {x0} and x̂∗0 = x0. Set E0 = {x0} .
Determine a0 (x0). Take a0 (x0) observations from x0, set
N0 (x0) = a0 (x0), and calculate Ḡ0 (x0).

2. Sampling: Let k = k + 1. Identify Uk and Lk and thus
Hk ( for k = 1,Uk = ∅,Lk = ∅, and Ck = Θ) . Let Ck =
Hk ∩Θ. Sample mk solutions xk1,xk2, . . . ,xkm from Ck

using Fk (Uniform Sampling). Remove any duplicates
from xk1,xk2, . . . ,xkm, and let Sk be the remaining set.
Let S (k) = S (k − 1) ∪Sk. Notice that mk = m.

3. Estimation: Let Ek = Sk ∪
{
x̂∗k−1

}
. For all x ∈ Ek, take

ak(x) simulation observations. Update Nk(x) and Ḡk(x).
For all x /∈ Ck, let Nk(x) = Nk−1(x) and Ḡk(x) = Ḡk−1(x).

4. Let x̂∗k = arg minx∈`k Ḡk(x). Go to Step 2.
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Illustration of Hyperbox
For a visited solution x, let x(d) be its d th coordinate,
1 ≤ d ≤ D. Let l(d)k = maxx∈S (k),x 6=x̂∗k

{
x(d) : x(d) < x̂∗(d)

}
if it

exists; otherwise, let l(d)k = −∞. Similarly, let u(d)k =

minx∈S (k),x 6=x̂∗k

{
x(d) : x(d) > x̂

∗(d)
k

}
if it exists; otherwise, let

u
(d)
k =∞. Let Lk =

(
l
(1)
k , . . . , l

(D)
k

)
and Uk =

(
u
(1)
k , . . . , u

(D)
k

)
.
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I The volume of the COMPASS MPA may be much larger
than that of the AHA MPA for the same set of visited
solutions, especially when D is large.

I It is much easier to identify Hk than to identify the set of
active solutions for the COMPASS.

I AHA is very aggressive in closing toward locally
optimal solutions. (closing = shrinking)

I Hyper-box preserving: in each iteration, the MPA
constructed is a hyper-box.
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Convergence of the Generic LCRS
Assumption 1.
For all x ∈ Θ,

lim
r→∞

1

r

r∑
i=1

Gi(x) = g(x) w.p. 1

Condition 1.
The sampling distribution Fk guarantees that Pr{x ∈ Sk} ≥ ε
for all x ∈ N

(
x̂∗k−1

)
for some ε > 0 that is independent of k.

Condition 2.
The estimation scheme satisfies the following requirements:
I Ek is a subset of S (k), Ek contains x̂∗k−1 and Sk; and
I ak(x) is allocated such that minx∈Ek

Nk(x) ≥ 1 for all
k = 1, 2, . . ., and minx∈Ek

Nk(x)→∞ w.p. 1 as k →∞.
(e.g., ak(x) = min

{
5,
⌈
5(log k)1.01

⌉}
−Nk−1(x))
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Proposition 1.
Let x̂∗k′k = 0, 1, 2, . . . be a sequence of solutions generated by
Algorithm 1 when applied to problem (1). Suppose that
Assumption 1 is satisfied. If Conditions 1 and 2 hold, then
Pr {x̂∗k /∈M i.o. } = 0.

Proof of this Proposition will be introduced later if time is
allowed.
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Convergence of AHA

Proposition 2.
AHA is an instance of the general LCRS algorithm when
solutions are uniformly randomly sampled within the MPA Ck

at each iteration k.
PROOF. To verify Condition 1 , we need to compute
Pr {x ∈ Sk} for all x ∈ N

(
x̂∗k−1

)
. Notice that

N
(
x̂∗k−1

)
⊆Hk ∩Θ = Ck−1 by construction. Denote the m

solutions independently and uniformly sampled within Ck−1 as
x1,x2, . . . ,xm. For all x ∈ N

(
x̂∗k−1

)
we have

Pr {x ∈ Sk} = 1− Pr {x /∈ Sk} = 1− Pr {x1 6=
x, . . . ,xm 6= x} = 1− Pr {x1 6= x}m . Then we have
Pr {x1 6= x} = (|Ck−1| − 1) / |Ck−1| . So

Pr {x ∈ Sk} = 1−
(

1− 1

|Ck−1|

)m

≥ 1−
(

1− 1

|Θ|

)m

> 0

Thus Condition 1 is satisfied.
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Ek = Sk ∪
{
x̂∗k−1

}
Next, we check Condition 2. It is clear that Ek is a subset of
S (k). So the first requirement is satisfied. By construction,
AHA also satisfies the second part of Condition 2. The third
requirement is on the sample allocation schedule, and thus we
can use (e.g., ak(x) = min

{
5,
⌈
5(log k)1.01

⌉}
−Nk−1(x)), which

satisfies this requirement. Therefore, Condition 2 is also
satisfied.
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Implementation of MPA

A straightforward implementation is to use a data structure to
record the positions of all visited solutions for each
coordinate, and then for each x̂∗k, search the entire map for
u
(d)
k and l(d)k . The algorithmic complexity is
O(|S (k)| log(|S (k)|)) (with a special data structure in C++).

Compared with the constraint pruning in the original
COMPASS algorithm, this overhead is also quite small.
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The Local Optimality Stopping Test for AHA

AHA is asymptotically convergent; a finite-time stopping test is
required.

An approach is to compare the sample best solution and all of
its neighbors by taking i.i.d. observations of those solutions.

Xu et al. (2010) developed one such test:

H0 : g (x̂∗k) ≤ min
y∈N(x̂∗k)

g(y) versus H1 : g (x̂∗k) > min
y∈N(x̂∗k)

g(y).

There are two outcomes of the test:
I x̂∗k passes the test and is accepted.
I some other solution in N (x̂∗k) is returned as the current

sample best solution and the search continues.
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Timing of The Local Optimality Stopping Test
The construction of Ck means that AHA will always have more
than one solution inside the MPA.

There are two obvious options for the local optimality test:
I OPTION 1. once x̂∗k is the only interior solution of the

MPA Ck, the algorithm hands x̂∗k and all of its neighbors
(some of which may not have been visited yet) to the
stopping test procedure.

However, this may lead to too many premature tests and
consume a lot of simulation replications unnecessarily, since
AHA is very aggressive in closing toward locally
optimal solutions. 25 / 45



Timing of The Local Optimality Stopping Test

I OPTION 2.Once x̂∗k is the only interior solution of the
MPA Ck, and all of x̂∗′k s neighbors have been visited, the
algorithm hands x̂∗k and all of its neighbors to the stopping
test procedure.

However, waiting for all neighbors to be visited by uniform
random sampling can take a long time.
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Strengthening Neighborhood Sampling for AHA

I Step 3.1. Check if x̂∗k is the only interior solution in Ck. If
not, continue with Step 2 in AHA.

I Step 3.2. Let k = k + 1. For all x ∈ N
(
x̂∗k−1

)
, check if

x ∈ S (k − 1). Let Dk ⊆ {1, 2, . . . , D} be the set of
coordinate directions along which there are unvisited
neighbors. If Dk = ∅, invoke stopping test.

I Step 3.3. Randomly pick a coordinate direction from Dk

and sample one neighbor along that direction. Repeat the
process m− 2 times to generate xk1,xk2, . . . ,xk(m−1)
(Neighborhood Sampling). Sample randomly within
Ck−1 to generate xkm (for convergence). Remove any
duplicates from xk1,xk2, . . ., xkm, and let Sk be the
remaining set. Let S (k) = S (k − 1) ∪Sk and Ck = Ck−1.
Continue with Step 3 in AHA.
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Analysis of MPA
I Intuitively, AHA should scale well in high-dimensional

problems because at most 2D solutions and as few as two
solutions are needed to construct a hyperbox containing
x∗k.

I COMPASS needs to have more and more solutions to define
an enclosing MPA containing x∗k as dimension increases.
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I Beyond the asymptotic analysis, it is possible to analyze
one aspect of the algorithm’s finite-time behavior: how it
cuts down/shrink the MPA for a deterministic
problem.

I The effectiveness of a locally convergent DOvS algorithm
depends on its ability to focus in on a locally optimal
solution (to some extent). (Shrinking too quickly could also
be inefficient. )

I Dimensionality: An algorithm whose ability to do so
degrades as dimension increases in the best case
(deterministic output) will certainly struggle in a stochastic
problem.
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Modeling the MPA Volume Reduction
I The feasible region is a hyperbox of volume 1 in a

D-dimension solution space.
I A unique locally optimal solution x∗ = (0, 0, . . . , 0)T .
I The Corner Case (the most favorable): Θ1 = [0, 1]D

I The Center Case (the least favorable): Θ2 = [−1/2, 1/2]D

I We assume that x∗ is the initial solution. In one iteration,
we sample m solutions x1,x2, . . . ,xm uniformly from Θ1 or
Θ2. We then construct the MPA with these solutions using
AHA or COMPASS.

I The measure is EV , where V is the volume of MPA in each
case. The smaller EV is, the more efficient the algorithm is.
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The AHA MPA
Single Iteration for the Corner Case
The expected volume of the MPA constructed according to
AHA using m solutions x1,x2, . . . ,xm uniformly randomly
sampled within Θ1 is

E(V ) =

(
1

m+ 1

)D

(4)

Single Iteration for the Center Case

E(V ) =

{
2

m+ 1

[
1−

(
1

2

)m+1
]}D

≈
(

2

m+ 1

)D

(5)

For arbitrary x∗, AHA reduces the volume of the MPA at a rate
of (C/(m+ 1))D, where C is a constant between 1 and 2 and
varies from iteration to iteration.
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Suppose we have a fixed budget of M simulation replications,
and it takes one replication to evaluate each sampled solution.
If we sample m solutions at each iteration, then we will use up
the simulation budget at iteration k ≈M/m.

Fixed Budget Multiple Iterations
The expected volume is

E (Vk) ∼ (C/(m+ 1))DM/m.

E (Vk) is minimized by letting m = 2.8 (when C = 1 ) or
m = 5.5 (when C = 2 ). Therefore it is reasonable to sample
three to six solutions at each iteration.
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COMPASS MPA

Unlike AHA, the geometry of COMPASS is much more
complicated, and there are no simple closed-form expressions for
E(V ). However, we are able to derive asymptotic lower bounds
when D is large.

Single Iteration for the Corner Case

E(V ) ≥ Φ(−0.49
√
D)m (6)

Single Iteration for the Center Case

E(V ) ≥ Φ(0.46
√
D)m (7)

The MPA formed by COMPASS is no longer a hyperbox, and
we can not extend the analysis to multiple iterations.
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Comparison Result
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Comparison Result

I AHA’s ability to shrink the MPA is more robust than
COMPASS with respect to the location of x∗.

I COMPASS may be more efficient at shrinking the MPA
than AHA when D is small and m is large for the Corner
Case, however, as D increases, the efficiency of AHA
quickly catches up and surpass COMPASS.

I AHA’s ability to shrink the volume of the MPA keeps up
with the exponential increase in the number of feasible
solutions as D increases.

I For the Center Case, as D increases, E(V ) actually
increases, which helps to explain why COMPASS slows
down dramatically as the dimension of Θ increases.
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Test Problems

39 / 45



High-Dimensional Problem with a Single Local
Minimum

40 / 45



High-Dimensional Problem with Many Local
Minimums
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Observations

I AHA achieves performance comparable to that of
COMPASS for low-dimensional problems (D ≤ 10) and is
much more efficient in solving high-dimensional problems
(D > 10).

I AHA converges to locally optimal solutions very quickly
and therefore risks being trapped in inferior ones in the
presence of multiple locally optimal solutions.

I However, the global phase of the ISC software largely
alleviates this problem.
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Conclusion

I AHA has performance similar to or slightly inferior to that
of COMPASS when dimension is low, say, less than 10. For
high-dimensional problems, AHA outperforms COMPASS
by a significant margin.

I It is of vital importance to maintain a proper balance
between premature local optimality testing and the time it
takes AHA to sample all neighbors of the current sample
best solution.

I It adopts a hyperbox-shaped MPA geometry but still uses
the same uniform random sampling as COMPASS does to
sample solutions inside the MPA.
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Comments

I AHA is simpler to implement than COMPASS.
I ISC is required for a good performance.
I Stopping test may be time consuming.
I The sampling distribution of solutions may have significant

impact on algorithms’ performance.
I Next step: EEE, GPS, BO...
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