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Fully Constrained DOvS

• DOvS problem:
min
x∈Θ

Eψ[G (x, ψ)], (1)

where Θ = Φ ∩L d , Φ is a closed and bounded set in Rd , and L d is the
set of d-dimensional vectors with integer elements.

• Fully constrained: Φ is bounded; Discrete: integer.

• ψ: stochastic input to the simulation

• Let g(x) := Eψ[G (x, ψ)], g(x) cannot be evaluated easily but the r.v.
G (x, ψ) can be observed via a simulation experiment at x. Gi (x) denotes
the i-th observation of G (x, ψ).
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Assumption 1

Assumption 1

For every x ∈ Θ, we have

Pr

(
lim
r→∞

1

r

r∑
i=1

Gi (x) = g(x)

)
= 1.

A1: sample mean of G (x, ψ) is an appropriate estimator of g(x).

SLLN, when Gi (x) are i.i.d.

Ergodic thm, when Gi (x) are ergodic
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Some Notations

Neighborhood and local minimizer:

N (x) := {y ∈ Θ|‖x− y‖ = 1}: local neighborhood of x ∈ Θ

x is a local minimizer: if x ∈ Θ and either N (x) = ∅ or g(x) ≤ g(y)
for all y ∈ N (x)

M : the set of local minimizers of g in Θ

In the COMPASS algorithm,

Vk : the set of all solutions visited through iteration k

x̂∗k : the solution with the smallest aggregated sample mean among all
x ∈ Vk (if more than one solution having the smallest aggregated
sample mean, then select x̂∗k randomly)

At the end of iteration k, construct the most promising area:

Ck := {x ∈ Θ|‖x− x̂∗k‖ ≤ ‖x− y‖,∀y ∈ Vk and y 6= x̂∗k}

Note that Ck includes all feasible solutions that are at least as close to x̂∗k
as to other solutions in Vk . x̂∗k ∈ Ck , hence Ck is not empty.
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Simulation-Allocation Rule

The COMPASS algorithm needs a simulation-allocation rule (SAR) to
allocate simulation observations to solutions in Vk .

ak(x): the additional observations allocated to x at iteration k

Nk(x) :=
∑k

i=0 ai (x): the total number of observations on solution x
up to iteration k

Ḡk(x): the sample mean of all Nk(x) observations of G (x, ψ) at
iteration k
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Algorithm 1

COMPASS: convergent optimization via most-promising-area stochastic
search

COMPASS for Fully Constrained DOvS

Step 0. Set iteration count k = 0. Find x0 ∈ Θ, set V0 = {x0} and
x̂∗k = x0. Determine a0(x0) according to the SAR. Take a0(x0)
observations from x0, set N0(x0) = a0(x0), and calculate Ḡ0(x0). Let
C0 = Θ.

Step 1. Let k = k + 1. Sample xk1, xk2, . . . , xkm uniformly and
independently from Ck−1. Let Vk = Vk−1∪ {xk1, xk2, . . . , xkm}.
Determine ak(x) according to the SAR for every x in Vk . For all x ∈ Vk ,
take ak(x) observations, and update Nk(x) and Ḡk(x).

Step 2. Let x̂∗k = arg minx∈Vk
Ḡk(x). Construct Ck and go to Step 1.
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Remarks

The m solutions independently from Ck−1 could be repeated. The
most promising areas are getting smaller in the iteration count. If
Ck−1 becomes a singleton, then all m solutions sampled are x̂∗k−1.

The algorithm can be stopped whenever all of the computational
budget is consumed, or when x̂∗k does not change for many iterations
and all solutions in its local neighborhood have been visited.

Algorithm 1 may not visit every solution in Θ, even if the
computational budget is infinite, which is different from globally
convergent DOvS algorithms.
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Assumption 2

To make Algorithm 1 converge, we make the following assumption on the
SAR.

Assumption 2

The SAR guarantees that ak(x) > 1 if x is a newly visited solution at
iteration k (x ∈ Vk\Vk−1), and limk→∞Nk(x) = +∞ for all visited
solutions (x ∈

⋃∞
k=0 Vk).

• The simplest SAR satisfying A2 is an equal SAR that sets Nk(x) = Nk

for all x ∈ Vk and Nk →∞ as k →∞ (for instance, Nk = k).
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Thm 1

We have the following convergence theorem.

Thm 1

If A1 and A2 are satisfied, then the infinite sequence {x̂∗0, x̂∗1, . . .}
generated by Algorithm 1 converges with probability 1 to the set M in the
sense that Pr {x̂∗k /∈M i.o.} = 0.

• Thm 1 means, with probability 1, x̂∗k is not a local optimal solution only
finitely many times.
• If M is a singleton, then the element in M is the global optimal
solution, and Thm 1 guarantees the global convergence of Algorithm 1.
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Sketch of the Proof

• Let V∞ =
⋃∞

k=0 Vk ,

Pr {x̂∗k /∈M i.o.} =
∑
A⊂Θ

Pr {x̂∗k /∈M i.o. | V∞ = A}Pr {V∞ = A} .

It is equivalent to proving Pr {x̂∗k /∈M i.o. | V∞ = A} = 0 for all A ⊂ Θ
s.t. Pr {V∞ = A} > 0.
• If x̂∗k /∈M i.o., then there exists an x ∈ A and x /∈M such that x̂∗k = x
i.o. Because x /∈M , there exists a y ∈ N (x) such that g(y) < g(x).

Pr {y ∈ Vk+1 | x̂∗k = x and y /∈ Vk} >
1

|Θ|
> 0

for any iteration k + 1. Because x̂∗k = x i.o., Pr {y ∈ A | V∞ = A and
x̂∗k = x i.o.} = 1. If y ∈ A, then g(x) 6= minz∈A g(z) because g(y) < g(x).
• Then, we only need to prove

Pr

{
lim
k→∞

g (x̂∗k) = min
x∈V∞

g(x) | V∞ = A

}
= 1,

which could be proved with some inequalities.
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Partially Constrained and Uncontrained DOvS

• DOvS problem:
min
x∈Θ

Eψ[G (x, ψ)], (2)

where Θ = Φ ∩L d . If Φ is a closed but unbounded set in Rd , then we
call the problem a partially constrained or unconstrained problem.

If Φ = Rd , then the problem is unconstrained

Otherwise, it is partially constrained
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Assumption 3

We make the following assumption on G (x, ψ).

Assumption 3

For any positive constant ε and any x ∈ Θ, there exist positive numbers r∗

and ε∗ such that for all r > r∗ and for all 0 < ε 6 ε∗,

P

[∣∣∣∣∣1r
r∑

i=1

Gi (x)− g(x)

∣∣∣∣∣ > ε

]
6 λ(r , ε)

where λ(r , ε) is a strictly decreasing function of r and λ(r , ε)→ 0 as
r →∞.

Two special cases of A3:

Gi (x) satisfies i.i.d. sequence with finite and uniformly bounded
variance

Gi (x) satisfies large deviation principle
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Assumption 4

To establish local convergence, we make the following assumption on the
objective function

Assumption 4

For the user provided starting point x0, there exists a compact set Π and a
positive constant δ such that x0 ∈ Π ∩Θ and g(x) > g (x0) + δ for any
x ∈ Πc ∩Θ.

• Many DOvS problems have a benchmark system setting, say x0, which is
often the current system setting. All solutions beyond some (unknown)
distance from the benchmark setting will typically be inferior to the
benchmark. Therefore, A4 is satisfied.
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Algorithm 2

Idea: Construct bounded hyper-rectangles Bk and adopt Algorithm 1.

COMPASS for Partially Constrained or Unconstrained DOvS

Step 0. Set iteration counter k = 0. Find x0 ∈ Θ, set V0 = {x0} and
x̂∗0 = x0. Determine a0 (x0) according to the SAR. Take a0 (x0)
observations from x0, set N0 (x0) = a0 (x0), and calculate Ḡ (x0) .

Construct B0 =
∏d

i=1

[
b

(i)
0 , b̄

(i)
0

]
such that b

(i)
0 < x

(i)
0 < b̄

(i)
0 for

i = 1, 2, . . . , d . Let C0 = Θ ∩B0.

Step 1. Let k = k + 1. Sample xk1, xk2, . . . , xkm uniformly and
independently from Ck−1. Let Vk = Vk−1∪ {xk1, xk2, . . . , xkm}. Determine
ak(x) according to the SAR for every x in Vk . For all x ∈ Vk , take ak(x)
observations, and update Nk(x) and Ḡk(x).
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Algorithm 2

COMPASS for Partially Constrained or Unconstrained DOvS

Step 2. Let x̂∗k = arg minx∈Vk Ḡk(x).

For each i , i = 1, 2, . . . , d , let x̄
(i)
k = max

{
x

(i)
k1 , . . . , x

(i)
km

}
and

x
(i)
k = min

{
x

(i)
k1 , . . . , x

(i)
km

}
.

If x̄
(i)
k > b̄

(i)
k−1−∆(i), then let b̄

(i)
k = x̄

(i)
k + ∆(i); otherwise, let b̄

(i)
k = b̄

(i)
k−1.

If x
(i)
k < b

(i)
k−1 + ∆(i), then let b

(i)
k = x

(i)
k −∆(i); otherwise, let b

(i)
k = b

(i)
k−1.

Let Bk =
∏d

i=1

[
b

(i)
k , b̄

(i)
k

]
and

Ck = {x ∈ Θ∩Bk | ‖x− x̂∗k‖ 6 ‖x− y‖,∀y ∈ Vk and y 6= x̂∗k}, and go to
Step 1.

• ∆(i) are user-provided positive numbers.
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Assumption 5

To prove the convergence of Algorithm 2, we make the following
assumption on the SAR.

Assumption 5

The SAR guarantees that there exists a sequence {r0, r1, . . .} such that
r0 > 1, rk+1 > rk for all k > 0, rk →∞ as k →∞,minx∈Vk

Nk(x) > rk
and limk→∞ kd+1λ (rk , ε) = 0 for any ε < ε∗, where ε∗ is defined in A3.

For example, rk = βkd+1+γ for some positive constants β and γ.
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Thm 2

Let M denote the set of local minimizers in Θ where |M | can be infinity.
We have the following theorem.

Thm 2

If A3-A5 are satisfied, then the infinite sequence {x̂∗0, x̂∗1, . . .} generated by
Algorithm 2 converges with probability 1 to the set M in the sense that
P {x̂∗k /∈M i.o.} = 0.
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Numerical Experiment

Consider the following 10-dimensional quadratic function:

g(x) = x2
1 + x2

2 + · · ·+ x2
10 + 1

where x = (x1, x2, . . . , x10)′. The problem has only one local optimal
solution, x∗ = (0, 0, . . . , 0)′, with g (x∗) = 1. We let
xi ∈ [−100, 100] ∩Z 10 and let x0 = (80, 80, . . . , 80)′. The problem has
1.08× 1023 feasible solutions. To study local convergence of COMPASS,
we let G (x, ψ) = g(x), which means the function can be evaluated
without noise.
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Local Convergence

From Figure 1 we see that, on average, fewer than 1,000 function
evaluations are required not only to visit x∗, but also to claim it is an
optimal solution when the number of solutions sampled in each iteration is
set to 1. Note that to claim that x∗ is a global optimal solution, one has
to evaluate all 1.08× 1023 solutions. This illustrates the merit of local
convergence.
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Adaptiveness

Consider a classic (s, S) inventory problem in which the level of inventory
of some discrete unit is periodically reviewed. The goal is to select s and S
such that the steady-state expected inventory cost per review period is
minimized. The constraints on s and S are S − s > 10,
20 6 s 6 80, 40 6 S 6 100, and s, S ∈ Z . The optimal inventory policy is
(20, 53) with expected cost/period of 111.1265.

• See Figures 2 and 3 in the paper

Because COMPASS keeps allocating simulation observations to all visited
solutions, it eventually escapes from the neighborhood of a nonoptimal
solution and moves toward the optimal solution.
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Constrained vs. Partially Constrained or Unconstrained

G (x) = g(x) + ε(x), letting ε(x) be normally distributed with mean 0 and
standard deviation 0.1g(x). We apply Algorithm 1 to the problem by
adding boundary constraints −500 6 xi 6 500, i = 1, 2, . . . , 10, and also
apply Algorithm 2 to the unconstrained problem. Both algorithms use the
same starting point (80, 80, . . . , 80)′. Algorithm 2 works better than
Algorithm 1.
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An Illustrative Example

• We study the following assemble-to-order system. The system has eight
items, I1, I2, . . . , I8, and five types of customers, T1,T2, . . . ,T5. Different
types of customers come into the system as Poisson arrival processes with
different rates, λ1, λ2, . . . , λ5, and each of them requires a set of key items
and a set of nonkey items. If any of the key items are out of stock, the
customer leaves. If all key items are in stock, the customer buys the
product assembled from all the key items and the available nonkey items.
• Each item sold brings a profit, pi , i = 1, 2, . . . , 8, and each item in
inventory has a holding cost per period, hi , i = 1, 2, . . . , 8. There are
inventory capacities for each item, C1,C2, . . . ,C8, such that 1 6 xi 6 Ci ,
and the production time for each item is normally distributed with mean
µi and variance σ2

i , i = 1, 2, . . . , 8, truncated at 0 . All parameters used
are included in Tables 1 and 2, see the paper
• We are interested in finding the optimal inventory level for each item to
maximize the expected total profit per period.
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Results
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