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Introduction

* Exploration: searching globally for promising solutions within the
entire feasible region.

* Exploitation : locally search for improved solutions in promising
subregions.

* Estimation : obtaining more precise objective function estimates
at desirable alternatives and an improved estimator of the optimal
solution.



Introduction
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* 0 is discrete, global sampling from © is possible, and f(8) at
any 8 € ® cannot be evaluated exactly and needs to be
estimated via a “blackbox” simulation procedure.



Difficulties of optimization via simulation

* The noise In the estimated objective function values

Can be almost completely eliminated by performing a lot of
simulation runs , but simulations are usually computationally
expensive.

* The fact that simulation optimization problems often have little
known structure (and solving even a deterministic optimization
problem with little known structure is difficult).

We want to design specialized algorithms to solve the above
problem that will search the feasible space thoroughly and yet be
able to identify optimal or near-optimal solutions In the presence of
noise.



Structural assumption

* NFL(no free lunch) theorems for deterministic optimization: that

L
O

ne average performance of each algorithm over all possible
Iscrete optimization problems is identical. This suggests that a

G

eterministic optimization problem will only be solved efficiently If

It possesses some known structure and the optimization algorithm
exploits that structure.

* Solutions located close to each other have similar performance.



Properties that optimization algorithms should
DOSSess In order to be efficient



Maintain balance between exploration and exploitation

Only know little about the structure of the objective function.
— Start by exploring the entire feasible region.

— Exploit good subregions by searching locally for better solutions.

— The effectiveness of the search algorithm depend heavily on the
ability of the method to identify when it should switch focus
from global search (exploration) to local search (exploitation).
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Differences between deterministic and simulation optimization

* Presence of stochastic errors , which leads to two complications :

1. More difficult to effectively guide the search for improved
solutions.

2. Select the best solution identified by the search.

* Simulation optimization problems are more likely to possess little
known structure.



Where future simulations are to be conducted

Some solutions might appear to be good when In fact they
are bad and vice versa.

— Not be misled by such information for long.

— Consider where additional simulations should be conducted to
benefit the search the most as well as to be careful in deciding how
much faith to put in the available function estimates, especially
when choosing the estimate of the optimal solution. This issue will
be further referred to as estimation.



Obtaining more precise function estimates

* |dentifying an optimal solution among very good solutions rather
than on locating good alternatives.

* How ? Achieved by allocating simulation effort to points with good
estimated objective function values, under our assumption that
solutions located close to one another have similar performance ,
local search of desirable regions will also yield improved objective
function estimates at good points.



Local search help with exploitation and estimation.

* the good empirical performance of these methods is at least to
some extent due to the fact that they happen to do estimation
well (this observation has not been made by the original authors).

* Simulated annealing (SA) Algorithm
Nested partitions(NP)method



Estimation of the optimal solution.

* The current solution
* The most visited solution
* The solution with the best estimated objective function value

* The solution with the best estimated objective function value,
provided It has been simulated “sufficiently often” .




Contents

* R-BEESE : the randomized balanced explorative and exploitative
search with estimation method

* A-BEESE : the adaptive explorative and exploitative search with
estimation method



R-BEES for deterministic optimization

* The global sampling distribution G
* The family of local sampling distributions £

* At any iteration, with probability O<p =1, the global distribution is
used , and with probability 1—p,a local distribution in £ s used.



Algorithm 1 (R-BEES Algorithm)

1:
2:

11:

n<0
Sample a solution 6 from the global
distribution G

3: Evaluate the objective function at ¢
+:
5
6

0, <0

: while Stopping criterion is not satisfied do

Draw a uniform (0, 1) random variable

U independent of everything else

if U <p then
Sample a solution 6§ from the global
distribution G independent of everything
else

else
Sample a solution 6 from a local distribution
in &

end if

12:

13:
14.:
15:
16:
17:
18:
19:
20:

Evaluate the objective function f at
6 (if needed)
if f(0) > f(6,) then
611—{—1 0
else
611—{—1 <~ 911
end if
n<n+1
end while
Present 0 =0, as the estimate of the
optimal solution
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THEOREM 1. (i) Suppose that f* < oo. Assume that the
global sampling distribution G on O is such that for every
k € N\{0}, G(A;) >0, where A, ={0 € O: f(0) > f*—
1/k}. Then, with probability one, f(0) converges to f* as
n— oo.

(ii) Suppose that f* = oo. Assume that the global sam-
pling distribution G on © is such that for every k integer
G(By) > 0, where B, = {0 € ©: f(0) > k}. Then, with prob-
ability one, f(0;) diverges to 400 as n — oo.



L vehicle for exploiting the special structure

* One reasonable choice: uniform distribution over a ball B;(6,,) of
radius [ around 6,,. As the search progresses, information about
the differences between objective function values of points
located within balls of radius | becomes available , and we could
alter the value of [ accordingly.

* Generally, N(8) c 0O is the neighborhood of each 8 € 0, then it
would be reasonable for the local distribution used In iteration n
to be uniform on N(6,,) .



R-BEESE © ac
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ulation optimization



With probabillity
O=a<l], the point 8,
with the highest
estimated objective
function value Is
sampled. y simulation
replications are
conducted at each
sampled point.

Alg

1:

11:

orithm 1 (R-BEES Algorithm)
n<«0
Sample a solution 6 from the global
distribution G
Evaluate the objective function at 6
0, <0
while Stopping criterion is not satisfied do
Draw a uniform (0, 1) random variable
U independent of everything else
if U <p then
Sample a solution 6 from the global
distribution G independent of everything
else
else
Sample a solution 6 from a local distribution
in &
end if

12:

13:
14
15:
16:
17:
18:
19:
20:

R-BEESE with @ =0, Mn =1, and y =1 reduces to the R-BEES method

Evaluate the objective function f at
6 (if needed)
if f(0) > f(6,) then
011.-1—1 <~ 0
else
011+1 <~ On
end if
n<n+1
end while
Present 6 = 6, as the estimate of the
optimal solution

l

Let 8, € © be the point with
the highest estimated objective
function value among solutions
that have been simulated at
least Mn times. If this set of
solutions is empty, then 6,= 6,



Definitions

* For each 6 € O, define f,,(8) to be the estimate of
f(0) available at the end of iteration n(let f,,(8) =
— oo if C,,(8)=0 ,where C,,(0) is the number of
times 8 has been simulated by the end of iteration

n) and f(8) to be the estimate of f(0) after 6 has
been sampled k times.



AssumpTION 1. For each 6 € O, P{lim,_ ﬁ(@) —

fO)} =1

Assumption 1 can be easily satisfied. In the case of
transient simulation, let X} be the ith observation of
X, collected by R—BEESE Then, Assumption 1 holds
with f.(0) = XX h,(X)/kr provided that X!, X2, ...
are mdependent random elements with the distri-
bution of X, and E[|h,(X,)|] < oo (this follows from
the strong law of large numbers).



THEOREM 2. Suppose that Assumption 1 holds, ® is
finite, and M, = o(n). Also, assume that G({0}) > € > 0
for all 0 € ©. Then, the R-BEESE method converges almost
surely to the set of optimal solutions ®* = {0 € ®: f(0) >
f(0') for all ' € B}



Note that Theorem 2 does not guarantee the effec-
tiveness of R-BEESE. This is not surprising given the
generality of the assumptions (e.g., no assumptions
are made about local sampling, even though the cho-
sen approach will likely impact performance in a
major way). Consequently, Theorem 2 provides suffi-
cient conditions under which R-BEESE is valid, leav-
ing much flexibility for algorithm development aimed
at achieving effective performance (for some efforts in
that direction; see §5). The assumptions on {M,} and
G in Theorem 2, for example, are satisfied when G is
uniform on ® and M, = \/n for all n.



(a) Unimodel problem with 62 = 1,000

|——R-BEESE(0, 0.5,1)
#* - - - R-BEESE(0, 0.5, 10)
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(a,p,r) : ais the most important!

(b) Unimodel problem with 62 = 160,000
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A-BEES

* R-BEES samples randomly either from local or global
distributions , A-BEES adaptively alternates between
sampling from local or global distributions, with the
goal of using the “appropriate” type of distribution
at each stage of the search.



A-BEES

* After sampling k points since the last review (decision
about the nature of the search),a decision is made
about whether the next k sampled points will be
selected using local or global distributions. Let v* be
the function value of the best solution 8,, found so far
and v; be the function value at the best point found
the last time a local search was performed. Let A be
the improvement in the function value between the
current and preceding reviews and D be the distance
between the points where the corresponding function
values were achieved.



Algorithm 2 (Sampling Distribution Update Proce-
dure for A-BEES)

1: if LocalSearch = true then

2: if A<§6 then

3: LocalSearch « false
4: v < 0"
5  end if
6: else
7: if A< 6 then
8: if v* — v/ > 0 then
9: LocalSearch < true
10: end if
11:  else
12: if D <d then
13: LocalSearch <« true
14: end if
15:  end if
16: end if

local —— global :

1.

the improvement A in the objective function value
between successive reviews is small. Usually this means
that the local search has identified a near-local optimal
solution, and hence, there is little merit in continuing
searching locally.

global — local:

1.

the improvement A is small but substantial
Improvement in the objective function value has been
achieved since the last switch from a local to a global
search. This means that A-BEES has identified a
promising region , and the global search is not yielding
substantial progress.

A is large but the distance D is small . This makes
sense because the improvement has been local in
nature, and hence, a local search may be preferable.



Algorithm 3 (A-BEES Algorithm)

1: counter <0, n <0 18: counter < 0
2: LocalSearch <« false 19:  end if
3: Sample a solution 6 from the global 20: n<n+1
distribution G 21: end while
4: Evaluate the objective function at 6 22: Present 0 =6, as the estimate of the
5: Let v*, vf < f(0) and 6, < 6 optimal solution
6: while Stopping criterion is not satisfied do Our convergence result for the A-BEES method is
7:  if LocalSearch = true then given below.
8 Sample a solution 6 from a local

THEOREM 3. Under the conditions of Theorem 1, we

distribution in & have lim,,_, ., f(8%) = f* almost surely.

9: else
10: Sample a solution 6 from the global
distribution G independent of
everything else

11:  end if
12:  Evaluate the objective function f at 0
(if needed)

13:  counter «- counter +1

14: Compute 6,., and update v* (if needed)
15:  if counter =k then

16: Update A and D

17: Update search nature (use Algorithm 2)



A-BEESE

* SUppose that two successive reviews
occur In iterations n4; and n, , where ny
< n,. Then, D is the distance from

Hnl o HTLZ 1A: fnz( an) R fnz( in) ’

v*:fnz(enz) 1 and vikz fnz(el)i .
where [ is the last iteration number in
which a local search was performed.



_/

With probability
O=sa<], the point
0,, with the
highest estimated
objective function
value is sampled. |

Algorlthm 3 (A-BEES Algorithm)

11:
12:

13:
14:
15:
16:
17:

: counter <0, n <0

LocalSearch <« false
Sample a solution 6 from the global
distribution G
Evaluate the objective function at 0
Let v*, vf < f(6) and 6, < 0
while Stopping criterion is not satisfied do
if LocalSearch = true then
Sample a solution 6 from a local
distribution in &
else
Sample a solution 6 from the global
distribution G independent of
everything else
end if
Evaluate the objective function f at 6
(if needed)
counter «<— counter +1
Compute 6,,, and update v* (if needed)
if counter = k then
Update A and D
Update search nature (use Algorithm 2)

18: counter <0

19:  end if

20 n<n+1

21: end while

22: Present 0 =0, as the estimate of the
optimal solution

The optimal solution 8, is estimated
as in the R-BEESE method.



Algorithm 2 (Sampling Distribution Update Proce-

dure for A-BEES)
1: if LocalSearch = true then
2: if A<¢ then
3 LocalSearch <« false
4. U] < v
5. end if
6: else
7: if A <6 then
8: if v* —vf > 0 then
9: LocalSearch « true
10: end if
11:  else
12: if D <d then
13: LocalSearch <« true
14: end if
15:  end if
16: end if

Conduct a local (global) search for k; (kg)
iterations before attempting to switch to a
global (local) search (by invoking Algorithm
2). Typically, the parameters k; and kg4 satisfy
ki = ky.

local —— global :

1.

the improvement A in the objective function value
between successive reviews is small. Usually this means
that the local search has identified a near-local optimal
solution, and hence, there is little merit in continuing
searching locally.

global —— local:

1.

the improvement A is small but substantial
Improvement in the objective function value has been
achieved since the last switch from a local to a global
search. This means that A-BEES has identified a
promising region , and the global search is not yielding
substantial progress.

A is large but the distance D is small . This makes
sense because the improvement has been local in
nature, and hence, a local search may be preferable.

If a global search has been conducted for g consecutive
reviews.



THEOREM 4. Under the conditions of Theorem 2 (in-
cluding the assumption that © is finite), the A-BEESE
method converges almost surely to the set of optimal solu-
tions ®*.



Numerical examples

Unimodal problem: £(6,, 6,) =max{0, —(6, — 30)* — (6, — 30)* + 400}
and ® ={(i,j) e N*: 0 <i,j <199}.
Two-hills problem: f(0) =max{f,(0), f,(0),0},
where f;(0) = —(0.46, — 5)*> — 2(0.460, — 17.2)> + 7 and

£,(0) = —(0.40, — 12)*> — (0.460, — 4)> + 4. The feasible
space ® = {0 = (6,,0,) eN*: 0<6,, 0, <49}

Buffer allocation problem: @ = {(91, .., 0:) € NP 0, +6,+0;<20;0,+ 0; =20,
1<6,<20fork=1,...,5}



(a) Unimodel problem with 62 = 0
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(b) Unimodel problem with 62 = 1,000
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(c) Unimodel problem with 62 = 160,000
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(d) Two-hills problem with 62 = 0
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(e) Two-hills problem with 62 = 1
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(f) Two-hills problem with 62 = 50
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A-BEES is considerably better than R-
BEES when o= 0 and that A-BEESE
has similar performance to R-BEESE
when a2 € {1000,16000}.



f(67)

f(67)

(a) Deterministic problem
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Iy | A-BEES(E) and R-BEES(E) perform
1 similarly, and they outperform both SA
algorithms.
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* The convergence of each method slows down as the noise
Increases. However, the relative performance of the methods
does not depend heavily on the noise level . Moreover , the

difference In the empirical performance of the R-BEESE and A-
BEESE methods becomes smaller as 6% grows.

* |n practice , one may not have the luxury of identifying good
parameter settings, and hence, the robustness of algorithms to

parameter values Is Important. Our experience Is that R-BEESE
IS quite robust to parameter value.




Thanks'!



