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Introduction

Random search algorithms

To solve discrete optimization-via-simulation(DOvS) problems

max
x∈Θ

g(x) := E[G(x)]

where the random variable G(x) typically has no closed-form
expression, and the solution set Θ = Ω ∩ Z d.
Locally convergent vs. Globally convergent algorithms
Exploitation and Exploration trade-off
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Introduction

Random search algorithms

The random search framework:
Given x0 ∈ Θ and let k = 1
At iteration k :

Sampling: Determine a sampling distribution over Θ, denoted
as fk (x | Fk−1) . Sample a set of solutions based on fk(·).
Evaluation: Evaluate (through running simulation experiments)
the solutions and determine the current best solution xk.
Let k = k + 1.

This paper derives a sampling distribution from a fast fitted
Gaussian process, which has the desired properties and can
automatically balance the exploitation and exploration trade-off.
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Desired Properties of Sampling Distribution

Desired Properties of a Sampling Distribution

Consider a one-dimensional problem max g(x), where g(x) can be
evaluated without noise. Six solutions have been sampled and
evaluated. Which region should have higher sampling probability?

R2 vs. R4 R1 vs. R3 R4 vs. R5

It is the classical tradeoff between exploitation and exploration!
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Desired Properties of Sampling Distribution

The Idea of Building a Sampling Distribution

Suppose that g(x) is a sample path of a Brownian motion
Y(x) process started from time −∞.
The process passes through the six points that have been
evaluated.
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Desired Properties of Sampling Distribution

The Idea of Building a Sampling Distribution

Given that the process passes through the six points, we can
derive the condition distribution (i.e., condition mean and
variance) of Y(x) for any point x0 ∈ Θ
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Desired Properties of Sampling Distribution

The Idea of Building a Sampling Distribution
Given that the distributions, we can calculate
Pr

{
Y(x) > g∗k−1

}
for each x ∈ Θ, where g∗k−1 = 4.

Then, we normalize the probabilities into a sampling
distribution, i.e.,

fk(x) =
Pr

{
Y(x) > g∗k−1

}∑
y∈Θ Pr

{
Y(y) > g∗k−1

} ∀x ∈ Θ
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Desired Properties of Sampling Distribution

The Idea of Building a Sampling Distribution

To apply this idea to solve DOvS problems, we have to study the
following three issues:

How to handle multi-dimensional problems?
How to handle estimation errors?
How to sample from the sampling distribution?
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Gaussian Process-Based Sampling Distribution

Outline

1 Introduction

2 Desired Properties of Sampling Distribution

3 Gaussian Process-Based Sampling Distribution

4 Gaussian Process-Based Search Algorithm

5 Numerical Examples
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

The traditional kriging method models the simulation output
at a point x as

G(x) = M(x) + ϵ(x)

where M(x) is a stationary Gaussian process with mean 0 and
covariance function σ2γ(·, ·), and ϵ(x) is a normal random
variable with mean 0 and variance σ2

ϵ (x).
A stationary Gaussian process is a stochastic process{

M(x), x ∈ ℜd} such that M(x) ∼ N
(
0, σ2) for any x ∈ ℜd

and M (x1) , . . . ,M (xn) are jointly normally distributed for any
finite set of x1, . . . , xn ∈ ℜd

The stationary Gaussian process M(x) models the unknown
objective function g(x), the error term ϵ(x) models the noise
in the simulation output,they are independent of each other.
And we have Cov (ϵ(x), ϵ (x′)) = 0 for any x ̸= x′ in this paper.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

The traditional kriging method models the simulation output
at a point x as
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objective function g(x), the error term ϵ(x) models the noise
in the simulation output,they are independent of each other.
And we have Cov (ϵ(x), ϵ (x′)) = 0 for any x ̸= x′ in this paper.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Gaussian Process-Based Sampling Distribution

Kriging-Based Search

The traditional kriging method models the simulation output
at a point x as

G(x) = M(x) + ϵ(x)

where M(x) is a stationary Gaussian process with mean 0 and
covariance function σ2γ(·, ·), and ϵ(x) is a normal random
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The stationary Gaussian process M(x) models the unknown
objective function g(x), the error term ϵ(x) models the noise
in the simulation output,they are independent of each other.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

To model the spatial dependence, a correlation function

γ (x1, x2) = Corr (M (x1) ,M (x2))

needs to be chosen, which is typically a function of ∥x1 − x2∥.
Different functions may lead to different level of smoothness
of the sample path.
In this paper, we use γ (x1, x2) = exp

(
−∥x1 − x2∥2

)
.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

Suppose that, through the current iteration, a random search
algorithm has visited m points, denoted as x1, . . . , xm, and
have taken ni simulation replications for xi, i = 1, . . . ,m.

Let Ḡ (xi) denote the sample mean calculated from ni
observations of G (xi) for all i = 1, . . . ,m, let
Ḡ =

(
Ḡ (x1) , . . . , Ḡ (xm)

)T,
and let Σϵ be an m × m matrix whose (i, i) th element is
σ2
ϵ (xi) /ni whereas all other elements are 0.

let Γ be an m × m matrix whose (i, j) th element is γ (xi, xj),
and γ (x0) be an m-dimensional vector whose i th element is
γ (x0, xi).
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

Suppose that, through the current iteration, a random search
algorithm has visited m points, denoted as x1, . . . , xm, and
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Kriging-Based Search

Suppose that, through the current iteration, a random search
algorithm has visited m points, denoted as x1, . . . , xm, and
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Kriging-Based Search

Suppose that, through the current iteration, a random search
algorithm has visited m points, denoted as x1, . . . , xm, and
have taken ni simulation replications for xi, i = 1, . . . ,m.

Let Ḡ (xi) denote the sample mean calculated from ni
observations of G (xi) for all i = 1, . . . ,m, let
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)T,
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ϵ (xi) /ni whereas all other elements are 0.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

Then,[Ankenman et al. 2010] show that for any x0,
the MSE-optimal linear predictor (stochastic kriging model) of
g (x0) conditioned on the observed data is

ĝ (x0) = λ (x0)
T Ḡ

with
λ (x0)

T = γ (x0)
T
(
Γ +

1
σ2Σϵ

)−1

and the corresponding optimal MSE is

MSE (x0) = σ2
[
1 − λ (x0)

T γ (x0)
]
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

For every x ∈ Θ, let Y′(x) denote the metamodel of g(x) in
the stochastic kriging model.
Conditioned on all available information, Y′(x)(= M(x)) is
normally distributed with E∗ [Y′(x)] = ĝ(x) and
Var∗ [Y′(x)] = MSE(x),
where we use the notation E∗(·),Var∗(·) and Pr∗(·) to denote
they are conditioned on all available information.
the mean function ĝ(x) measures the need for exploitation
and the variance function MSE (x) measures the need for
exploration.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

For every x ∈ Θ, let Y′(x) denote the metamodel of g(x) in
the stochastic kriging model.
Conditioned on all available information, Y′(x)(= M(x)) is
normally distributed with E∗ [Y′(x)] = ĝ(x) and
Var∗ [Y′(x)] = MSE(x),
where we use the notation E∗(·),Var∗(·) and Pr∗(·) to denote
they are conditioned on all available information.
the mean function ĝ(x) measures the need for exploitation
and the variance function MSE (x) measures the need for
exploration.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

For every x ∈ Θ, let Y′(x) denote the metamodel of g(x) in
the stochastic kriging model.
Conditioned on all available information, Y′(x)(= M(x)) is
normally distributed with E∗ [Y′(x)] = ĝ(x) and
Var∗ [Y′(x)] = MSE(x),
where we use the notation E∗(·),Var∗(·) and Pr∗(·) to denote
they are conditioned on all available information.
the mean function ĝ(x) measures the need for exploitation
and the variance function MSE (x) measures the need for
exploration.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

For every x ∈ Θ, let Y′(x) denote the metamodel of g(x) in
the stochastic kriging model.
Conditioned on all available information, Y′(x)(= M(x)) is
normally distributed with E∗ [Y′(x)] = ĝ(x) and
Var∗ [Y′(x)] = MSE(x),
where we use the notation E∗(·),Var∗(·) and Pr∗(·) to denote
they are conditioned on all available information.
the mean function ĝ(x) measures the need for exploitation
and the variance function MSE (x) measures the need for
exploration.
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Gaussian Process-Based Sampling Distribution

Kriging-Based Search

Let c denote the current sample-best value, i.e., c =
max

{
Ḡ (x1) , . . . , Ḡ (xm)

}
.

Then, the conditional probability Pr∗ {Y′(x) > c} may be
calculated, and we may define the sampling distribution as

f(x) = Pr∗ {Y′(x) > c}∑
z∈Θ Pr∗ {Y′(z) > c} , x ∈ Θ

For any x ∈ Θ,Pr∗ {Y′(x) > c} represents the conditional
probability that x has a value that is better than the current
sample-best value c
f(x) represents the relative importance of x among all
solutions in Θ in its probability of being a better solution.
f(x) automatically balances the exploitation and exploration
trade-off.
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Gaussian Process-Based Sampling Distribution

Fast Construction of Gaussian Process

Note that in the stochastic kriging model, the prediction of
the value at a given solution is determined through minimizing
its MSE , which introduce the matrix inversion operation , it
is computationally intensive when m is large.
Because we need to fit a Gaussian process in each iteration, it
is computationally NOT practical.
It is important to notice that our goal is NOT to fit a surface,
but to find a good sampling distribution. It is not necessary to
minimize the MSE.
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We model g(x) as a sample path of

Y(x) = M(x) + λ(x)′(Ḡ − M) + λ(x)′ϵ

M(x) is a stationary Gaussian process,
Ḡ =

(
Ḡ (x1) , . . . , Ḡ (xm)

)T and M = (M (x1) , . . . ,M (xm))
′

ϵ = (ϵ1, . . . , ϵm)
′ where ϵi is an independent normal random

variable with mean 0 and variance σ2
i

ni
, i = 1, . . . ,m. The

covariance matrix of ϵ is

Σϵ = diag

(
σ2

1
n1

, . . . ,
σ2

m
nm

)
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λ(x) is a vector of weight functions that satisfy

Condition 2
For any x ∈ Θ, λ(x) is continuous in x and satisfies

1 λi(x) ⩾ 0 for any i = 1, . . . ,m;

2
∑m

i=1 λi(x) = 1;
3 λi (xj) = 1 {xi = xj} for all i, j = 1, . . . ,m, where 1{·} is the

indicator function.

For instance,for some b > 0

λi(x) =


∥x−xi∥−b∑m
j=1∥x−xj∥−b x ̸= xi

1 x = xi
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Proposition 1
For any x ∈ Θ, if Condition 2 is satisfied,

E∗[Y(x)] =λ(x)TḠ,
Var∗[Y(x)] =σ2 [1 − 2λ(x)Tγ(x) + λ(x)TΓλ(x)

]
+ λ(x)TΣϵλ(x)

Furthermore,
E∗ [Y (xi)] = Ḡ (xi)

Var∗ [Y (xi)] = σ2 (xi) /ni

for all i = 1, . . . ,m
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Fast Construction of Gaussian Process

Proposition 1 provides an approach to calculating the E∗[Y(x)]
and Var∗[Y(x)] functions without conducting matrix inversion.
Proposition 1 also shows that the E∗[Y(x)] and Var∗[Y(x)]
values at any evaluated solution xi are its sample mean and
the variance of the sample mean.
Therefore, we rely solely on the simulation information to
predict g(x) if x has been simulated.
Furthermore, when ni → ∞ or σ2 (xi) = 0,E∗ [Y (xi)] → g (xi)
and Var∗ [Y (xi)] → 0, for any i = 1, . . . ,m
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Fast Construction of Gaussian Process

Proposition 1 shows that, for any solution x that has not been
simulated, the E∗[Y(x)] is a linear combination of
Ḡ (xi) , i = 1, . . . ,m, which are the sample means of the
evaluated solutions.
Notice that the commonly used weight function λ(x), such as
those introduced above, depends only on the distances of x to
x1, . . . , xm, and closer solutions often have higher weights.
Then, solutions that are close to the current sample-best
point tend to have a high E∗[Y(x)] value and solutions that
are close to the current sample-worst point tend to have a low
E∗[Y(x)] value.
Therefore, the E∗[Y(x)] function can successfully reflect the
necessity of exploitation.
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Fast Construction of Gaussian Process

Proposition 1 also shows that, for any solution x that has not
been simulated, the Var∗[Y(x)] consists of two parts.
The first part σ2 [1 − 2λ(x)Tγ(x) + λ(x)TΓλ(x)

]
represents

the uncertainty caused by the allocation of the simulated
solutions (i.e., x1, . . . , xm )
and the second part λ(x)TΣϵλ(x) represents the uncertainty
caused by the estimation error at the simulated solutions.
To see how the Var∗[Y(x)] function reflects the necessity of
exploration, we consider the first part of the function.
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Fast Construction of Gaussian Process

We let

σ̃2(x) = σ2 [1 − 2λ(x)Tγ(x) + λ(x)TΓλ(x)
]

which is the first part of Var∗[Y(x)].
A direct analysis of σ̃2(x) is difficult.However, we can analyze
its lower bound.
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For the correlation function setting in the Gaussian process

γ (x1, x2) = h (∥x1 − x2∥)

We have the following condition and proposition

Condition 1
The correlation function 0 ⩽ h(t) ⩽ 1 is a decreasing function of t
when t ⩾ 0 and, for any
x0, x1, x2 ∈ Θ, h (∥x1 − x2∥) ⩾ h (∥x0 − x1∥) · h (∥x0 − x2∥)

Proposition 2
Let d(x) = min {∥x − x1∥ , . . . , ∥x − xm∥} Suppose that Condition
1 is satisfied by the correlation function h(·). Then,
σ̃2(x) ⩾ σ2[1 − h(d(x))]2 and σ̃2(x) = 0 if d(x) = 0



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Gaussian Process-Based Sampling Distribution
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By Proposition 2, the lower bound of σ̃2(x) increases as x
moves away from the set of evaluated solutions and decreases
as x moves closer to one of the evaluated solutions.
Therefore, we conclude that the Var∗[Y(x)] function reflects
the necessity of exploration.
From the above analysis we see the model has the appealing
properties and is appropriate in deriving sampling distributions.
Then, given the values of E∗[Y(x)] and Var∗[Y(x)], we may
calculate the Pr∗{Y(x) > c} where
c = max

{
Ḡ (x1) , . . . , Ḡ (xm)

}
and derive the sampling

distribution.

f(x) = Pr∗ {Y′(x) > c}∑
z∈Θ Pr∗ {Y′(z) > c} , x ∈ Θ
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Gaussian Process-Based Sampling Distribution

Sampling from the Sampling Distribution

Note that

fk(x) =
Pr

{
Y(x) > ĝ∗k−1

}∑
y∈Θ Pr

{
Y(y) > ĝ∗k−1

} ∀x ∈ Θ

It is often impossible to compute
∑

y∈Θ Pr
{

Y(y) > ĝ∗k−1
}

.
Note that Pr

{
Y(x) > ĝ∗k−1

}
≤ 1

2 for all x ∈ Θ. Then, we use
the following Acceptance-Rejection Sampling (ARS)
Algorithm to sample from fk(x) :
Step 1 Sample Z uniformly from Θ,
Step 2 Sample U from U(0, 1). If U ≤ 2Pr

{
Y(Z) > ĝ∗k−1

}
,

let X = Z; otherwise, go to Step 1,
Step 3 Output X.
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Y(Z) > ĝ∗k−1

}
,

let X = Z; otherwise, go to Step 1,
Step 3 Output X.
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Sampling from the Sampling Distribution

Note that

fk(x) =
Pr

{
Y(x) > ĝ∗k−1

}∑
y∈Θ Pr

{
Y(y) > ĝ∗k−1

} ∀x ∈ Θ

It is often impossible to compute
∑

y∈Θ Pr
{

Y(y) > ĝ∗k−1
}

.
Note that Pr

{
Y(x) > ĝ∗k−1

}
≤ 1

2 for all x ∈ Θ. Then, we use
the following Acceptance-Rejection Sampling (ARS)
Algorithm to sample from fk(x) :
Step 1 Sample Z uniformly from Θ,
Step 2 Sample U from U(0, 1). If U ≤ 2Pr

{
Y(Z) > ĝ∗k−1

}
,

let X = Z; otherwise, go to Step 1,
Step 3 Output X.
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Gaussian Process-Based Sampling Distribution

Sampling from the Sampling Distribution

By applying the ARS algorithm, we avoid computing the
closed-form expression of f(x) and, thus, significantly improve
the efficiency of sampling from f(x).
When the probability mass of f(x) is mainly concentrated on
small subsets of Θ, however, the acceptance-rejection scheme
used in the ARS algorithm may no longer be efficient because
the probability of acceptance may be very low.
Therefore, we also develop an approximate sampling algorithm
by using a Markov chain sampling approach, which called
Markov Chain Coordinate Sampling (MCCS)Algorithm.
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Sampling from the Sampling Distribution

By applying the ARS algorithm, we avoid computing the
closed-form expression of f(x) and, thus, significantly improve
the efficiency of sampling from f(x).
When the probability mass of f(x) is mainly concentrated on
small subsets of Θ, however, the acceptance-rejection scheme
used in the ARS algorithm may no longer be efficient because
the probability of acceptance may be very low.
Therefore, we also develop an approximate sampling algorithm
by using a Markov chain sampling approach, which called
Markov Chain Coordinate Sampling (MCCS)Algorithm.
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Gaussian Process-Based Sampling Distribution

Sampling from the Sampling Distribution

By applying the ARS algorithm, we avoid computing the
closed-form expression of f(x) and, thus, significantly improve
the efficiency of sampling from f(x).
When the probability mass of f(x) is mainly concentrated on
small subsets of Θ, however, the acceptance-rejection scheme
used in the ARS algorithm may no longer be efficient because
the probability of acceptance may be very low.
Therefore, we also develop an approximate sampling algorithm
by using a Markov chain sampling approach, which called
Markov Chain Coordinate Sampling (MCCS)Algorithm.
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Gaussian Process-Based Sampling Distribution

Sampling from the Sampling Distribution

Step 0 Let t = 0, y = x0.
Step 1 Let t = t + 1. Sample uniformly an integer I from 1

to d. Let l(y, I) be the line that passes through y and
parallel to the yI coordinate axis. Then l(y, I)
intersects with the boundary of Ω (notice that
Θ ⊂ Ω and Ω ⊂ ℜd is a convex set) at two points
c1, c2. Sample an integer j uniformly from
[c1, y(I)− 1] ∪ [y(I) + 1, c2] . Set z = y and then
set z(I) = j.

Step 2 If U ⩽ f(z)/f(y) = Pr∗{Y(z) > c}/Pr∗{Y(y) > c},
set y = z.

Step 3 If t = T, return y; otherwise go to Step 1 .
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Gaussian Process-Based Sampling Distribution

Sampling from the Sampling Distribution

According to [Baumert et al. 2010], we have, as T → ∞, the
distribution of y converges to the sampling distribution f(·).
And the MCCS algorithm guarantees to sample
(approximately) a solution every T steps.
Therefore, it may become more efficient than the ARS
algorithm when the acceptance rate in the ARS becomes very
low (i.e.,lower than 1

T ).
Therefore, we may use the MCCS algorithm when the ARS
algorithm becomes slow.
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Gaussian Process-Based Search Algorithm

GPS Algorithm for DOvS Problems

In the GPS algorithm, we let Sk denote the sets of simulated
solutions through iteration k.
Step 0 Sample ℓ solutions uniformly from Θ, denoted as

x01, . . . , x0ℓ. Take m0 observations for each of them
and calculate their sample means and sample
variances. Let S0 = {x01, . . . , x0ℓ}. Let
x∗0 = argmaxx∈S0 Ḡ(x) and ĝ∗0 = Ḡ

(
x∗0
)
. Set k = 0

Step 1 Let k = k+ 1. Construct a sampling distribution fk(x)
based on all solutions in Sk−1. Sample ℓ solutions
from Θ based on fk(x), denoted as xk1, . . . , xkℓ.

Step 2 Take mk observations for x∗k−1 and xk1, . . . , xkℓ and
update their sample means and sample variances. Let
x∗k = argmaxx∈Sk Ḡ(x) and ĝ∗k = Ḡ (x∗k). Go to Step 1.
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Gaussian Process-Based Search Algorithm

Convergence of GPS Algorithm

Lemma 4
Let nk(x) denote the number of simulation observations through
iteration k for all x ∈ Sk. Suppose that the GPS algorithm is used
to solve Problem (1) and Conditions 1 and 2 are satisfied. Then,
nk(x) → ∞ w.p. 1 for all x ∈ Θ

Theorem 1
Suppose that the GPS algorithm is used to solve Problem (1) and
Conditions 1 and 2 are satisfied. Then, ĝ∗k → g∗ w.p.1 as k → ∞.
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Gaussian Process-Based Search Algorithm

Stopping Criteria

∆k,1 =
1
|Θ|

∑
x∈Θ

Pr∗ {Yk(x) ⩾ ĝ∗k}

∆k,2 =
1
|Θ|

∑
x∈Θ

E∗ [(Yk(x)− ĝ∗k)+
]

∆k,3 =
∑
x∈Θ

Pr∗ {Yk(x) ⩾ ĝ∗k} fk+1(x)

∆k,4 =
∑
x∈Θ

E∗ [(Yk(x)− ĝ∗k)+
]

fk+1(x)
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Gaussian Process-Based Search Algorithm

Stopping Criteria

Notice that ∆k,1 = Pr∗ {Yk(U) ⩾ ĝ∗k} and ∆k,2 =
E∗ [(Yk(U)− ĝ∗k)

+], where U is a random vector that is
uniformly distributed on Θ and independent of other
randomness.
∆k,1 is the expected conditional probability that a uniformly
generated solution on Θ has a value that is greater than the
current sample best solution
∆k,2 is the expected conditional improvement.
Therefore, we may stop the algorithm when the values of ∆k,1
and ∆k,2 are small enough,
meaning that the chance of finding a better solution is small
enough so that we may not have a significant loss if we stop
the algorithm at iteration k.
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Stopping Criteria

Notice that ∆k,1 = Pr∗ {Yk(U) ⩾ ĝ∗k} and ∆k,2 =
E∗ [(Yk(U)− ĝ∗k)

+], where U is a random vector that is
uniformly distributed on Θ and independent of other
randomness.
∆k,1 is the expected conditional probability that a uniformly
generated solution on Θ has a value that is greater than the
current sample best solution
∆k,2 is the expected conditional improvement.
Therefore, we may stop the algorithm when the values of ∆k,1
and ∆k,2 are small enough,
meaning that the chance of finding a better solution is small
enough so that we may not have a significant loss if we stop
the algorithm at iteration k.
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Stopping Criteria

Notice that ∆k,1 = Pr∗ {Yk(U) ⩾ ĝ∗k} and ∆k,2 =
E∗ [(Yk(U)− ĝ∗k)

+], where U is a random vector that is
uniformly distributed on Θ and independent of other
randomness.
∆k,1 is the expected conditional probability that a uniformly
generated solution on Θ has a value that is greater than the
current sample best solution
∆k,2 is the expected conditional improvement.
Therefore, we may stop the algorithm when the values of ∆k,1
and ∆k,2 are small enough,
meaning that the chance of finding a better solution is small
enough so that we may not have a significant loss if we stop
the algorithm at iteration k.
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Stopping Criteria

Notice that ∆k,1 = Pr∗ {Yk(U) ⩾ ĝ∗k} and ∆k,2 =
E∗ [(Yk(U)− ĝ∗k)

+], where U is a random vector that is
uniformly distributed on Θ and independent of other
randomness.
∆k,1 is the expected conditional probability that a uniformly
generated solution on Θ has a value that is greater than the
current sample best solution
∆k,2 is the expected conditional improvement.
Therefore, we may stop the algorithm when the values of ∆k,1
and ∆k,2 are small enough,
meaning that the chance of finding a better solution is small
enough so that we may not have a significant loss if we stop
the algorithm at iteration k.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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Stopping Criteria

Notice that ∆k,1 = Pr∗ {Yk(U) ⩾ ĝ∗k} and ∆k,2 =
E∗ [(Yk(U)− ĝ∗k)

+], where U is a random vector that is
uniformly distributed on Θ and independent of other
randomness.
∆k,1 is the expected conditional probability that a uniformly
generated solution on Θ has a value that is greater than the
current sample best solution
∆k,2 is the expected conditional improvement.
Therefore, we may stop the algorithm when the values of ∆k,1
and ∆k,2 are small enough,
meaning that the chance of finding a better solution is small
enough so that we may not have a significant loss if we stop
the algorithm at iteration k.
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Stopping Criteria

Similarly, ∆k,3 = Pr∗ {Yk(X) ⩾ ĝ∗k} and ∆k,4 =
E∗ [(Yk(X)− ĝ∗k)

+], where X is a random vector that is
distributed according to fk+1(x) and independent of other
randomness.
∆k,3 is the expected conditional probability that a better
solution can be found in iteration k + 1
∆k,4 is the expected conditional improvement in iteration
k + 1.
we may stop the algorithm when the values of ∆k,3 and ∆k,4
are small enough,
indicating that the gain from an additional iteration is small
enough
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Stopping Criteria
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∆k,4 is the expected conditional improvement in iteration
k + 1.
we may stop the algorithm when the values of ∆k,3 and ∆k,4
are small enough,
indicating that the gain from an additional iteration is small
enough
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k + 1.
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Similarly, ∆k,3 = Pr∗ {Yk(X) ⩾ ĝ∗k} and ∆k,4 =
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Stopping Criteria

Similarly, ∆k,3 = Pr∗ {Yk(X) ⩾ ĝ∗k} and ∆k,4 =
E∗ [(Yk(X)− ĝ∗k)

+], where X is a random vector that is
distributed according to fk+1(x) and independent of other
randomness.
∆k,3 is the expected conditional probability that a better
solution can be found in iteration k + 1
∆k,4 is the expected conditional improvement in iteration
k + 1.
we may stop the algorithm when the values of ∆k,3 and ∆k,4
are small enough,
indicating that the gain from an additional iteration is small
enough
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Numerical Examples

A Problem with Multiple Local Optima

The function has 108 feasible solutions and 25 local optimal
solutions.
The values of the three highest peaks are 20, 19.17 and 19.17,
respectively
The noise term is N(0, 3).
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A Problem with Multiple Local Optima
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A Problem with Multiple Local Optima
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Numerical Examples

A Problem with Multiple Local Optima
σ is a parameter in the Gaussian process to model the inherent
fluctuations of the surface. One may use it to adjust the behavior
of the GPS algorithm.
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Numerical Examples

Conclusions

This paper propose a Gaussian process-based approach to
constructing sampling distributions that balance the
exploitation and exploration trade-off in a seamless way.
Develop the GPS algorithm that implements the sampling
distributions, analyze its global convergence, and study its
practical performances on the numerical examples
Propose several stopping criteria that may be used in the GPS
algorithm and study their numerical performances.
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Extension

First, the sampling distribution can be extended easily to
continuous OvS problems. However, the global convergence of
the resulted algorithm may be difficult to prove.
Second,it may be beneficial to adopt a dynamic estimation
scheme in the algorithm to improve the finite time
performance.
Third, the issue of designing stopping criteria for globally
convergent random search algorithms is both interesting and
important and deserves more study.
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Thanks for listening !
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