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Overview

This paper proposes a framework for adaptive search algorithms that
perform exactly one simulation per design point, which are called single
observation search algorithms (SOSA).

There are two main points of this framework:

e Estimating a point with an average of observed values from previously
visited nearby points within a shrinking ball

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 4/54



Overview

This paper proposes a framework for adaptive search algorithms that
perform exactly one simulation per design point, which are called single
observation search algorithms (SOSA).

There are two main points of this framework:

e Estimating a point with an average of observed values from previously
visited nearby points within a shrinking ball

@ Convergence to a global optimum for this class of SOSA algorithms
under some mild regularity conditions

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 4/54



Contents

© Problem Formulation

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 5/54



Problem Formulation

The stochastic optimization problem we consider is

inf
T
where x € S C R4 and
f(x) = E[g(x, U)]-
f(x) cannot be evaluated exactly, the performance at a design point

xeScRYisgivenby g: S x Q— R, where U is a random element
over a probability space denoted (R, <7, P).
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Problem Formulation

Assume that f is continuous and S is compact so that a minimum exists.
Let 27 = argminycs f(x) denote the set of optimal solutions, 7* be the
optimal value.

We estimate f(x) by observing the output, g(x, u), where u is a
realization of the random variable U. The difference between the observed
performance and mean performance, denoted

Z(x) = g(x, U) = f(x),

represents the random observational error.
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Dependencies Among the Errors

@ When the random observational errors are i.i.d across all iterations of
the algorithm, according to strong law of large numbers, the error
goes to 0 as iterations go to infinity.
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Dependencies Among the Errors

@ When the random observational errors are i.i.d across all iterations of
the algorithm, according to strong law of large numbers, the error
goes to 0 as iterations go to infinity.

@ However, for an adaptive algorithm, the random errors are in general,
neither identically distributed nor independent. An adaptive algorithm
favors “better” design points and the optimal value estimates tend to
be negatively biased.

e The accumulated error of the process after a point has been evaluated
forms a martingale
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Dependencies Among the Errors

@ When the random observational errors are i.i.d across all iterations of
the algorithm, according to strong law of large numbers, the error
goes to 0 as iterations go to infinity.
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favors “better” design points and the optimal value estimates tend to
be negatively biased.
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Dependencies Among the Errors

Examples

Suppose S is the union of two non-overlapping balls L and R. Moreover,
suppose that the objective function values f(x), for x € L, are better (less)
than those in R.

Step 1. sample from ball L

Step 2. sample from the other ball R

Step 3. The third point will be sampled from the ball with the smaller
observed value.

Given point 3, point 2 is dependent on point 1:
= Suppose the third point is in R. In this case, a negative error at the first
point indicates that the error at the second point must also be negative.
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Dependencies Among the Errors

@ Errors looking backward from the current iteration point are
dependent (e.g., looking at the first and second points, having
sampled the third).
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Dependencies Among the Errors

@ Errors looking backward from the current iteration point are
dependent (e.g., looking at the first and second points, having
sampled the third).

@ Errors looking forward when conditioning on the identity of the
current iteration point (e.g., looking at the fourth point, having
sampled the third) are independent of past errors.

e The accumulated error of the process after a point has been evaluated
forms a martingale
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The feasible set S © R? is a closed and bounded convex set with
nonempty interior.

The objective function f(x) is continuous on S.
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The random error (g(x, U) — f(x)) is uniformly bounded over x € S; that
is, there exists 0 < « < 0o such that, for all x € S, with probability one,

lg(x, U) — f(x)] < a.

Assumption 3 does not include distributions having infinite support, such
as normal or gamma distributions.
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The random error (g(x, U) — f(x)) is uniformly bounded over x € S; that
is, there exists 0 < « < 0o such that, for all x € S, with probability one,

lg(x, U) — f(x)] < a.

Assumption 3 does not include distributions having infinite support, such
as normal or gamma distributions.

Assumption 3’

The random error (g(x, U) — f(x)) has bounded variance over x € S.

= Assumption 3 leads to a stronger convergence result (convergence with
probability one) than Assumption 3’ (convergence in probability).

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 13 /54



Contents

© SOSA Framework

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 14 /54



B(x,r) the ball centered at x with radius r

Zn the set of sample points obtained up to iteration n

%, the set of funtion evaluations up to iteration n.

fo (xi) the objective function estimate of x;

ln (x;) | the number of points that fall into the balls centered at x;
Qn sampling density

n a sequence of radii.
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Single Observation Search Algorithms (SOSA)

We are given:

@ A continuous initial sampling density for search on S : g1(x), and a
family of continuous adaptive search sampling distributions on S with
density:

q”(x|X17y17---7xn—17}/n—1), n=273,...,

where x,, is the sample point at iteration n and y, is its observed
function value.

@ A sequence of radii r, > 0.

@ A sequence i < n.

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 16 /54



Single Observation Search Algorithms (SOSA)

Step 0: Sample x; from q;, observe y; = g (xi, u1), where vy is a sample
value from distribution U and independent of x;. Set 27 = {x1} and

2 ={y1}. Also, set 1 (x1) = ;" (x1) = y1, h (x1) =1, and x{' = x1. Set
n=2.

Step 1: Given x1,y1,...,Xp_1, Yn—1, Sample the next point x, from g,

and evaluate the objective function value y, = g (x», un).

Step 2: Update 2, = Zh-1U{x,} and &}, = #,_1 U{y,}. For each
x € 4, update the contribution and the estimate of the objective function
value 7,(x). Estimate the optimal value as £, and optimal solution x.

Step 3: If a stopping criterion is met, stop. Otherwise, update n < n+1
and go to Step 1 .
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Single Observation Search Algorithms (SOSA)

Step 2: Update 2, = Z,-1U{x,} and %}, = #,,_1 U{y,}. For each
x € Zn, update Ip(x) and fp(x) as:

In—l(X) if Xn ¢ B (X7 Fn)
In(x) = {k < n:x € B(x,n)} = i
(x)={ n: Xk (%, ric) }H {Inl(x)+1 if x, € B(x,r),
f(x) = 2 {k<mixeBlxr)} Y
n {k < n:xc€B(x,n)}

_ {fnl(x), if X, & B(x,rn),
((n(x) = 1) Faa(0) + ) /a6, iF 0 € B (x 1),
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Single Observation Search Algorithms (SOSA)

Step 2: Estimate the optimal value as:

fi = min £,(x)

and estimate the optimal solution as
e {xe 2, hx) =1},

where 2 is the subset of 2, that only includes points through i,.

Trick: The algorithm takes the estimate of the optimal value from a
subset of the function estimates up to i,. The idea is that the shrinking
balls around points used to estimate a global optimum shrink slowly
enough to allow for the number of points in those balls to grow to infinity.
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Martingale Property of Random Error

Recall that Z(x) = g(x, U) — f(x), and because:
E[Z(x)] = E[g(x,U)] — f(x) = f(x) — f(x) =0, x€S,

Z(x) is a random error with zero expectation. Let X, and Y/, denote the
sample point and its corresponding evaluation at iteration n. Then

Yn= g(Xm Un)

where {U,,n=1,2,...} are random elements, i.i.d..

We can construct a filtration, starting with .%y = o (X1), the o-field
generated by Xj, and then, ., = o (Xq, U1, ..., Xy, U, Xnt+1), the o-field
generated by X1, U, ..., Xy, Un, Xnt1.

Xn, Yn is %, measurable. The process of (X, Y,) is then adapted to the
filtration {Z,}72,.
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Martingale Property of Random Error

Denote the random error at iteration n by Z,, where
Zy=Y,—f(Xn)

Z(x) is a random error with zero expectation. Let X, and Y, denote the
sample point and its corresponding evaluation at iteration n. Then

Yo =g (Xn, Un)
Because X, is .%,_1 measurable and U, is independent of .%,_1,
E[Yn | Fna] =Elg (Xa, Un) | Fn-1] = E[g (Xn, Un) | Xil
— E[g (Xn, U) | Xo] = £ (X,)
Then, we derive the martingale property of random error:

E[Z, | Zno1] = E[Ys — F (X)) | Zoot] =E[Yp | Za1] — f (Xa) =0,
E[Z,] = E[E[Z, | #n_1]] = E[0] = 0.
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Accumulated Error

At iteration n, and for a sample point X;, i < n, let M, (X;) be the
accumulated error in estimating f (X;) using evaluations from the points
X, k =1,...,n that fall into balls around X;. Define an indicator
function of points in balls around X,

/ (X)— 1 ikaEB(X;,rk)
T N0 i Xe ¢ B(Xi, )

for k =1,...,n. Using the indicator function, we have
Mo (X)) =Y I (X)) Z.
k=1

Note that {M, (X;),n=1,2,...} for i > 1 is not a martingale, owing to
the dependencies on early sample points in the sequence.
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Accumulated Error

Decompose the accumulated error M, (X;) into two parts (the error from
the sample points that preceded X; and the error from the sample points

that were sampled after Xj):

i—1

M (Xi) =Y I (X0) Zic + M} (X;)
k=0

My(X) =Y Ik(X)Z, n=ii+1,...
k=i
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Forany i, i=1,2, ..., {M,’, (X;),n=1i,i+1,...} is a martingale with
respect to the filtration {Z,,n=1i,i+1,...}.
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Forany i, i=1,2, ..., {M,’, (X;),n=1i,i+1,...} is a martingale with
respect to the filtration {Z,,n=1i,i+1,...}.

Proof:
Define I\;I,’, = > %_; Zk as the accumulated error from all points sampled
on the iterations from iteration i/ through iteration n.

First show that {M,’,, n=ii+1,.. } is a martingale with respect to the

filtration {Fp,n=1,i+1,...,}.
This is equivalent to showing that:

E[|M:]] < oo, and E[M! | %, 1] = M., for all n > i.
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Foranyi, i=1,2,..., {Mi(X)),n=i,i+1,...}is a martingale with
respect to the filtration {Z,,n=1i,i+1,...}.

Proof:
By Assumption 3, E[|Z,]] < a < co. Then, E[|Mi[] < (n—i+1)a < o In
addition:

E[M;r | cgnfll = IE[Zn + Mrl;—l | ﬁ.nfl]
=E[Z, | Fna] + E[Mrl;—l | Fn-1]
= Mll;—l

Now, for n=1i,i+1,...
Mi(X:) Z (X)) Zk = ML (X)) + 1n(X0) (V) = NI _4)

By the impossibility of systems (Feller 1971), {M! (X;),n=1i,i+1,...} is
a martingale.
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Estimate of Function value

For a fixed /, let L, (X;) be the number of sample points that fall into the
balls B (Xj, rx) around X; where k =1,...,n and n > i; that is,

Lo (Xi) = I (X))
k=1

The estimate of the function value at point X; can be expressed as

_ k=t W (X) Yie 3k I (X) £ (Xk) | M (X)
Ly (Xi) Ly (Xi) Ly (Xi)/

f (X7)

where the first term includes the systematic bias and the second term is
the accumulated error.
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Estimate of Function value

The estimate of the optimal value f* is

f*= min {fn(X;)} _ i_T?.,Iin{Zk—l Zl;(())(é'i))f(xk) n I\L/’:(())éi))}

i=1,...,in

The size of the subset i, is a control parameter required to ensure the
convergence of the optimal value estimate f* to the true optimal value f*
by slowing the search for an optimum.
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Given a function of natural numbers L(n), define D(n) to be the event
that each x has at least L(n) sample points in the balls around x; that is,

D(n) = {L,,(x) > Z(n)}.

x€ES

The key idea is that the number of points in the balls around x grows at
least as fast as L(n) even though the radii of the balls are shrinking.

= the balls cannot shrink too quickly, they must maintain a threshold of
sample points.
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Assumption 4

Assumption 4

Assume there exists 1/2 < v < 1 and a function L(n) that is Q (n”) such
that

S~ B(D(n)°) < o0,
n=1

where D(n)€ is the complement of event D(n) and +y is called an order of
local sample density.

* A function h(n) is called Q(nP), where p € R if there is a 0 < k; < 00
such that for all n € N, h(n) > k;nP.

Kexin Qin Single Observation Adaptive Search Dec 6th,2021 30/54



Assumption 4

Assumption 4

Assume there exists 1/2 < v < 1 and a function L(n) that is Q (n”) such
that

S~ B(D(n)°) < o0,
n=1

where D(n)€ is the complement of event D(n) and +y is called an order of
local sample density.

* A function h(n) is called Q(nP), where p € R if there is a 0 < k; < 00
such that for all n € N, h(n) > k;nP.

Assumption 4 ensures that there are on the order of n” evaluations used in
the estimate of every point. If the search sampling density g,,n=1,2,...
is uniformly bounded away from zero on S and r,, is of Q (n_(l_”/d), then
Assumption 4 is satisfied.
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Convergence Analysis

Expand the estimate of the function value in as

() = Skt b () £ | Sy e (X0) (F (%) = £ (X0)

Ln (XI) L,7 (X,)
N St Ik (X) Zie | Son; e (X)) Zi
Ly (Xi) L, (Xi)
=f (X;) + <Zk‘1 Zk ((féi))f Xe) _ f(X;)>
i (XD Zie SSh_ e (X) Z
Ln (Xi) Ln (Xi)

o the first term: the correct value
@ the second term: the bias due to nearby points
@ the third term: the non-martingale accumulated error

@ the fourth term: the martingale accumulated error
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Convergence Analysis

@ the first term: the correct value

o the second term: the bias due to nearby points.
employ Cesa'ro’s Lemma with the shrinking ball mechanism to show
that the bias term is washed away by averaging.

Cesdro's Lemma

If x,x1,xp,... are real numbers such that x, — x as n — oo, then

n
> k1 Xk Sy
n
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Convergence Analysis

@ the first term: the correct value
@ the second term: the bias due to nearby points

o the third term: the non-martingale accumulated error
the slowing sequence, i,, is employed to slow the growth of this term,
causing this non-martingale random error to diminish to zero when
divided by the number of points in the associated balls.
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Convergence Analysis

o the fourth term: the martingale accumulated error
the slowing sequence together with the martingale property through
the Azuma—Hoeffding inequality causes the martingale random error
to disappear.

Azuma-Hoeffding Inequality

Let My,..., M, be a martingale with mean p = E[M,]. Let My = 1 and
suppose that, for k > 1,

My — My_1] < o,

where ay > 0,k =1,2,.... Then, for all n > 0 and any € > 0,

62
P(|M, — My|) >€) <2 e
(1M, = M) > €) < 2650 (= )
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Define A(n,e) as the event that, when we consider only the early portion
of the sequence up to i,, at least one objective function estimate is
incorrect by more than the target error ¢ allowed for € > 0; that is,

in

A(n,e) = U {

fo (X) — f(Xi)‘ > 5} :

Theorem 2
If Assumptions 1,2, 3, and 4 are satisfied, and if i, T co such that i, < n°,
where 0 < s < 7, then, for all € > 0,

Z P(A(n,e)) < oo.
n=1
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Proof of Theorem 2

By Assumption 4 , there exist 1/2 < v < 1 and &, such that L(n) > k;n"
and

> P(D(n)) < o0
n=1
Observe that
A(n,e) = [A(n,e) N D(n)] U[A(n,e) N D(n)].

P(A(n,e)) <P(A(n,e) N D(n)) + P (A(n,e) N D(n))
< P(A(n,e) N D(n)) +P(D(n)))

By Assumption 4,%"°°; P(D(n)€) < co. Therefore, it suffices to show
that:

ZIP’(A(n,E) N D(n)) < o
n=1
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Proof of Theorem 2

Let

A(n,e) = UE(n/

where E(n,i) = { fo (X)) — f(X,-)’ > 5}. The total error can be
decomposed into three components, Ei(n, i), Ex(n,i) and E3(n,i):

E(n,i) C Ex(n,i) U Ex(n,i)U E3(n,i)

where:

Ei(n,i) = { Dok=t I (X) £ (Xi)

e
Lo (X;) - 2}
Ex(n, i) — {‘Z (();,)Z > i} and  E3(n,i) = {‘AZ:Q((;I))

9
>
>4
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Proof of Theorem 2

and, hence,
P(A(n,e) N D(n <ZIP’ (Ex(n, i) N D(n +ZIP’ (Ex(n, i) N D(n))

+ ZIP’(Eg,(n, i) N D(n))
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Proof of Theorem 2

Consider first S P (Ey(n, i) N D(n)).

By Assumptions 1 and 2, f is uniformly continuous on S. Since the radii of
balls r, | 0, if xx € B(x,rx),k=1,...,n, we have f (x,) = f(x). By
Cesdro's Lemma, there exist K such that, for all x € S and

xk € B(x,r¢),k=1,...,m, we have that m > K implies

Lz () ( Kt < </2

Since L(n) > kyn?, if n> (K/k)Y7, then L[(n) > K. Let n > (K/k )Y
and fix i < n. Suppose D(n) occurs. Consider when

Xi1=x1,...,Xp = Xp

and x;, € B(x;,r;,) for k =1,...,m. Since D(n) occurs, by Assumption
4, we have L, (x;) = m> L(n) > K.
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Proof of Theorem 2

By Azuma—Hoeffding inequality,

Zk 1Ik (X)f(Xk Zk 1f(X’k) — f(x:
n(Xi) X)‘ ' f( I)

Therefore, E1(n, i) does not occur. Hence, for n > (K//-@L)l/7 and i < n,
we have Ei(n,i) N D(n) = 0 and, hence,

P (Ey(n, i) N D(n)) =

Since this is true for all i < n, we also have

<e/2

zn:}P’(El(n, i)ND(n)) =0

i=1

That means S, P (Ey(n, i) N D(n)) > 0 for only finitely many n. Hence,

> ZH:P(El(", i) N D(n)) < oo

n=1 j=1
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Proof of Theorem 2

Now we show that 327, 5™ . P (Ex(n, i) N D(n)) < oo. Fix iy < n°.

Ex(n, i) N D(n {‘Ek"lkx)z" Z}mD()

c{ > 5 0o

by the bounded variance assumption in Assumption 3 , and since

L(n) > kyn"
s { > Z}

Since i, < n®and 0 < s <~v,P(Ex(n,i)ND(n))=0foralli=1,...,i,
when n is large enough. Hence,

> iP(Ez(n, i) N D(n)) < oo

n=1 j=1

io

Lo (Xi)| —

S

n" o

KpnY
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Proof of Theorem 2

Now show that S P (E3(n, i) N D(n)) — 0 as n — oo.
Es(n,i) N D(n) = {‘ > ((X,')) } N D(n)
= {IMy ()| = Lo (X) 5 } 0 D(n)
c {|m; )| = L(n)3 |

Therefore, foreach i =1,...,i,,

P (Es(n, i) N D(n)) < P (}M; (X)| > Z(n)%)

[(n)2e?
<2exp | -
=co® ( 32(n— i+ 1)a?

by Azuma—Hoeffding inequality and Theorem 1

<9 nfn2”ﬂ€2
ex —
=P\ T2 i r1)a2
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Proof of Theorem 2

since L(n) > k. n?

2,2v.2
Ken*e
< 2exp <_ 3>L2na2>

12 p(27-1) 22
<2ep <_L3m2

Combining the probabilities for all i = 1,...,i, < n°, we have the
following.

in 2 (2y-1)2
S P(Es(n, )N D(n)) < 2n° exp <_’W>

‘ 32a2
i=1

The right hand side of the last inequality has finite infinite sum because
1/2 <y < 1. Therefore,

> ijp(a(n, )N D(n)) < oo

n=1 i=1
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Define A(n,e) as the event that, when we consider only the early portion
of the sequence up to i,, at least one objective function estimate is
incorrect by more than the target error ¢ allowed for € > 0; that is,

in

A(n,e) = U {

fo (X) — f(Xi)‘ > 5} :

Theorem 2
If Assumptions 1,2, 3, and 4 are satisfied, and if i, T co such that i, < n°,
where 0 < s < 7, then, for all € > 0,

Z P(A(n,e)) < oo.
n=1
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Convergence Analysis

Once the estimated errors of sample points are controlled as described in
Theorem 2, the optimal value estimates converge to the true value.

If Assumptions 1,2, 3, and 4 are satisfied, and if i, T oo such that i, < n®,
where 0 < s < v, then f; — f* with probability one.

If Assumption 3 is relaxed to Assumption 3/, we have a weaker
convergence in probability result.

If Assumptions 1,2,3’, and 4 are satisfied, and if i, 1 oo such that i, < n®,
where 0 < s < 7, then, for all ¢ > 0,(i.e., f, — f* in probability.)

o

28>=0,

L
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Proof of Theorem 3

By Assumptions 1,2, for a fixed ¢, there exists d such that, for x,y € S,

lIx — y|| < & implies |f(x) — f(y)| < /2. Select an optimal solution
x* € X*. Whenever ||x — x*|| < d, we have

|f(x) — f(x*)] = |f(x) — f*| < ¢/2. Define

(n,e/2) = ﬂ{||x — x*|| > 6}

Therefore, ﬂf”zl {|f (Xi) = *| >¢/2} C F(n,e/2) and

{

fr = |2

e} C A(n,e/2) U F(n,e/2)
C A(n,e/2) U [F(n,e/2) N D(n)] U D(n)“

Hence,
iP(\f;‘—f"] >) < iP(A(n,sQ))—i—iP( (n,e/2)ND(n +ZD
n=1 n=1 n=1
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Proof of Theorem 3

Theorem 2 states that the first term on the right hand side is finite.
Assumption 4 implies that the last term on the right hand side is finite.
Now consider the second term.

Since r, | 0, i, 1 00 and L(n) 1 0o, when n large enough

F(n,e/2) N D(n) = (. Therefore, P(F(n,e/2) N D(n)) > 0 for finitely
many n, which implies

ZP(F(n,5/2) N D(n)) < oo.
n=1

Hence,

e

25)<oo

2

Therefore, f,,* — f* with probability 1.

Kexin Qin Single Observation Adaptive Search Dec 6th,2021



Contents

© Numerical Results

Kexin Qin Single Observation Adaptive Search Dec 6th,2021



Experiments Settings

Apply four algorithms to two problems. Four algorithms:
1. SOSA with IHR sampler (IHR-SO);

2. SOSA with AP sampler (AP-SO);

3. ASR with IHR sampler (IHR-ASR);

4. ASR with AP sampler (AP-ASR).
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Experiments Settings

Problem 1 (Shifted Sinusoidal Problem).

min  E[f(x) + (1 + [f(x)[)U]
st. 0<x<m, i=1,...,10,

where
f(x) = — [2.5M12 sin (x; — 7/6) + N2y sin (5 (x; — 7/6))] + 3.5,

x € R1% and U ~ Uniform [~0.1,0.1]. According to Ali et al. (2005), this
problem contains 4,882,813 local optima with a single global optimum at
= (4r/6,..., 47/6) and f (x*) = 0.
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Experiments Settings

Problem 2 (Rosenbrock Problem).

min  E[f(x) + (1 + |f(x)])U]
st. —10<x <10, i=1,...,10,

where f(x) = 1076 x 5297} ((1 — x)? + 100 (xi11 — x,-2)2>,
x € R, and U ~ Uniform [-0.1,0.1]. The global minimum is at
(1,...,1) and f* =0.
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Experiments Results

Table 1. Statistics of the Optimal Value Estimates f; of the Four Algorithms at Termination

Percentile
Problem Algorithm Mean Mean squared error Best 25 50 75 Worst
Problem 1 THR-SO 0.3181 0.5103 0.0631 0.0915 0.1073 0.1433 2.6569
AP-SO 0.5354 0.7961 0.1109 0.1211 0.1278 0.9007 25117
THR-ASR 1.6085 3.8991 0.0751 0.2948 2.5052 2.5897 3.1575
AP-ASR 0.8905 1.6840 0.0436 0.0922 0.1780 1.8247 2.7173
Problem 2 THR-SO —0.0402 0.0017 —-0.0524 —0.0466 —0.0407 -0.0352 -0.0247
AP-SO -0.0079 0.0002 -0.0231 -0.0145 -0.0104 -0.0025 0.0615
THR-ASR -0.0065 0.0002 -0.0274 -0.0144 -0.0070 -0.0010 0.0243
AP-ASR 0.0499 0.0035 -0.0020 0.0254 0.0471 0.0682 0.1593

Notes. The experiments for Problem 1 terminate with # = 12,000. The experiments for Problem 2 terminate with n = 4,000.
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Experiments Results

Figure 1. (Color online) Performance Diagnostics for IHR-SO, AP-SO, IHR-ASR, and AP-ASR with Respect to Problem 1
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Experiments Results

Figure 2. (Color online) Performance Diagnostics for IHR-SO, AP-SO, IHR-ASR, and AP-ASR with Respect to Problem 2
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