

Stochastic Trust-Region Response-Surface Method (STRONG) – A New Response-Surface Framework for Simulation **Optimization**

Kuo-Hao Chang, L. Jeff Hong, Hong Wan

Zi Zhuang School of Data Science Fudan University December 2021

Problem Definition

Consider the following simulation optimization problem:

 $\min_{x \in \mathbb{X}^p} \mathbb{E}[G(x)],$

where

- x is the vector of continuous decision variables:
- $G(x)$ is the stochastic response evaluated at x;
- \mathbb{X}^p is the p-dimensional decision space (or "region of operability" in terminology of the RSM)

RSM and trust region

RSM

• Constructs a first-order (linear) model, uses the model to find a better solution in a region of interest (ROI), and repeats the process;

RSM and trust region

RSM

- Constructs a first-order (linear) model, uses the model to find a better solution in a region of interest (ROI), and repeats the process;
- Once a first-order model is no longer appropriate, a second-order (quadratic) model is constructed to predict the optimal solution.

RSM and trust region

RSM

- Constructs a first-order (linear) model, uses the model to find a better solution in a region of interest (ROI), and repeats the process;
- Once a first-order model is no longer appropriate, a second-order (quadratic) model is constructed to predict the optimal solution.

Trust region

• A trust region at a solution x' with a radius $\Delta > 0$ is

$$
B(x', \Delta) = \{ x \in \mathbb{X}^p : ||x - x'|| \le \Delta \}
$$

5 / 49

Assumptions

- 1. The objective function $q(x)$ is bounded below, twice differentiable, and there exist two positive constants, α_1 and β_1 , such that $\|\nabla g(x)\| \leq \alpha_1$ and $\|H(x)\| \leq \beta_1$.
- 2. The estimators of $q(x)$ and $\nabla q(x)$ satisfy $\sup_{x\in\mathbb{X}^p}|\bar{G}(x,n)-g(x)|\to 0$ w.p.1 as $n\to\infty$, and $\sup_{x\in\mathbb{X}^p}|\bar{D}(x,m)-\nabla g(x)|\to 0$ w.p.1 as $m\to\infty$.

First- and second-order models

First- and second-order model at iteration k :

$$
r_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k),
$$

 $r_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^T \hat{H}_k(x_k)(x - x_k).$

First- and second-order models

First- and second-order model at iteration k :

$$
r_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k),
$$

 $\mathbf{r}_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^T \hat{H}_k(x_k)(x - x_k).$ Solution (ideally):

 $x_k^* \in argmin\{r_k(x) : x \in B(x_k, \Delta_k)\},\$

First- and second-order models

First- and second-order model at iteration k :

$$
r_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k),
$$

 $\mathbf{r}_k(x) = \hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)(x - x_k) + \frac{1}{2}(x - x_k)^T \hat{H}_k(x_k)(x - x_k).$ Solution (ideally):

$$
x_k^* \in argmin\{r_k(x) : x \in B(x_k, \Delta_k)\},\
$$

Cauchy Point Calculation:

- 1. Find the steepest descent direction $d_k = argmin\{\hat{g}_k(x_k) + \hat{\nabla}g_k^T(x_k)d : ||d|| \leq \Delta_k\};$
- 2. Choose a step size $\tau_k = \operatorname{argmin} \{ r_k(\tau d_k) : \tau > 0, ||\tau d_k|| \leq \Delta_k \}.$
- 3. Let $x_k^* = x_k + \tau_k d_k$.

9 / 49

The RC test computes

$$
\rho_k = \frac{\hat{g}_k(x_k) - \hat{g}_k(x_k^*)}{r_k(x_k) - r_k(x_k^*)}
$$

The RC test computes

$$
\rho_k = \frac{\hat{g}_k(x_k) - \hat{g}_k(x_k^*)}{r_k(x_k) - r_k(x_k^*)}
$$

Let $0 < \eta_0 < \eta_1 < 1$, for example, set $\eta_0 = 1/4, \eta_1 = 3/4$.

• If ρ_k is large $(\rho_k \geq \eta_1)$, which implies that the new observed solution is significantly better than the current one, the new solution will be accepted.

The RC test computes

$$
\rho_k = \frac{\hat{g}_k(x_k) - \hat{g}_k(x_k^*)}{r_k(x_k) - r_k(x_k^*)}
$$

Let $0 < \eta_0 < \eta_1 < 1$, for example, set $\eta_0 = 1/4, \eta_1 = 3/4$.

- If ρ_k is large $(\rho_k \geq \eta_1)$, which implies that the new observed solution is significantly better than the current one, the new solution will be accepted.
- If ρ_k is moderate $(\eta_0 \leq \rho_k < \eta_1)$, which implies that the "observed reduction" has fair agreements with the "predicted reduction", the procedure will also accept the new solution.

The RC test computes

$$
\rho_k = \frac{\hat{g}_k(x_k) - \hat{g}_k(x_k^*)}{r_k(x_k) - r_k(x_k^*)}
$$

Let $0 < \eta_0 < \eta_1 < 1$, for example, set $\eta_0 = 1/4, \eta_1 = 3/4$.

- If ρ_k is large $(\rho_k \geq \eta_1)$, which implies that the new observed solution is significantly better than the current one, the new solution will be accepted.
- If ρ_k is moderate $(\eta_0 \leq \rho_k < \eta_1)$, which implies that the "observed reduction" has fair agreements with the "predicted reduction", the procedure will also accept the new solution.
- If ρ_k is close to 0 or negative $(\rho_k < \eta_0)$, which implies that the "observed reduction" does not agree with the "predicted reduction", the new solution will be rejected.

13 / 49

SR (Sufficient-Reduction) test

The SR test is defined as

 $H_0: g(x_k) - g(x_k^*) \leq \eta_0^2 \zeta_k \quad v.s. \quad H_1: g(x_k) - g(x_k^*) > \eta_0^2 \zeta_k,$

Let $0 < \eta_0 < \eta_1 < 1$, for example, set $\eta_0 = 1/4, \eta_1 = 3/4$. where

$$
\begin{array}{rcl}\n\zeta_k & := & \|\hat{\nabla}g_k(x_k)\|\Delta_k, \\
\zeta_k & := & \frac{1}{2}\|\hat{\nabla}g_k(x_k)\|\min\{\frac{\|\hat{\nabla}g_k(x_k)\|}{\|\hat{H}_k(x_k)\|}, \Delta_k\}.\n\end{array}
$$

in first- or second-order models respectively. If H_0 is rejected, we then conclude that the new solution yields a sufficient reduction.

STRONG has two stages and an inner loop.

STRONG has two stages and an inner loop. At iteration k , STRONG conducts the following four steps:

1. Construct a local model $r_k(x)$ around the center point x_k ;

STRONG has two stages and an inner loop. At iteration k , STRONG conducts the following four steps:

- 1. Construct a local model $r_k(x)$ around the center point x_k ;
- 2. Solve $x_k^* \in argmin\{r_k(x) : x \in B(x_k, \Delta_k)\};$

STRONG has two stages and an inner loop. At iteration k , STRONG conducts the following four steps:

- 1. Construct a local model $r_k(x)$ around the center point x_k ;
- 2. Solve $x_k^* \in argmin\{r_k(x) : x \in B(x_k, \Delta_k)\};$
- 3. Simulate several observations at x_k^* and estimate $g(x_k^*);$

STRONG has two stages and an inner loop.

At iteration k , STRONG conducts the following four steps:

- 1. Construct a local model $r_k(x)$ around the center point x_k ;
- 2. Solve $x_k^* \in argmin\{r_k(x) : x \in B(x_k, \Delta_k)\};$
- 3. Simulate several observations at x_k^* and estimate $g(x_k^*);$
- 4. Conduct ratio-comparison (RC) and sufficient-reduction (SR) tests to examine the quality of x^k and to update x_{k+1} and the size of trust region Δ_{k+1} .

[Stochastic Trust-Region Response-Surface Method \(STRONG\) – A New Response-Surface Framework for Simulation Optimization](#page-0-0) Kuo-Hao Chang, L. Jeff Hong, Hong Wan

STRONG-Framework

• Step 0. Set the iteration count $k = 0$. Select an initial solution x_0 , initial sample size of the center point n_0 and of the gradient estimator m_0 , initial trust region size Δ_0 , the switch threshold $\tilde{\Delta}$ satisfying $\Delta_0 > \tilde{\Delta} > 0$, and constants η_0, η_1, γ_1 , and γ_2 satisfying $0 < \eta_0 < \eta_1 < 1$ and $0 < \gamma_1 < 1 < \gamma_2$.

STRONG-Framework

- Step 0. Set the iteration count $k = 0$. Select an initial solution x_0 , initial sample size of the center point n_0 and of the gradient estimator m_0 , initial trust region size Δ_0 , the switch threshold $\tilde{\Delta}$ satisfying $\Delta_0 > \tilde{\Delta} > 0$, and constants η_0, η_1, γ_1 , and γ_2 satisfying $0 < \eta_0 < \eta_1 < 1$ and $0 < \gamma_1 < 1 < \gamma_2$.
- Step 1. Let $k = k + 1$. If $\Delta_k > \tilde{\Delta}$, go to Stage I; otherwise, go to Stage II.

STRONG-Framework

- Step 0. Set the iteration count $k = 0$. Select an initial solution x_0 , initial sample size of the center point n_0 and of the gradient estimator m_0 , initial trust region size Δ_0 , the switch threshold $\tilde{\Delta}$ satisfying $\Delta_0 > \tilde{\Delta} > 0$, and constants η_0, η_1, γ_1 , and γ_2 satisfying $0 < \eta_0 < \eta_1 < 1$ and $0 < \gamma_1 < 1 < \gamma_2$.
- Step 1. Let $k = k + 1$. If $\Delta_k > \tilde{\Delta}$, go to Stage I; otherwise, go to Stage II.
- Step 2. If the termination criterion is satisfied, stop and return the solution. Otherwise, go to Step 1.

1. Build a first-order model.

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- \blacksquare (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- \blacksquare (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \Delta_k$, and return to Step 1 in the main framework.

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \Delta_k$, and return to Step 1 in the main framework.
		- Otherwise, let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \Delta_k$, and return to Step 1 in the main framework.
		- Otherwise, let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Fully accept) perform the SR test:

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \Delta_k$, and return to Step 1 in the main framework.
		- Otherwise, let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Fully accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \gamma_2 \Delta_k$, and return to Step 1 in the main framework.

33 / 49

- 1. Build a first-order model.
- 2. Solve the subproblem and obtain a new solution x_k^* .
- 3. Take n_0 replications at the new solution x_k^* .
- 4. Perform the RC test, update the size of trust region:
	- (Reject) let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Moderate accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \Delta_k$, and return to Step 1 in the main framework.
		- Otherwise, let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.
	- (Fully accept) perform the SR test:
		- If passed, let $x_{k+1} = x_k^*$ and $\Delta_{k+1} = \gamma_2 \Delta_k$, and return to Step 1 in the main framework.
		- Otherwise, let $x_{k+1} = x_k$, $\Delta_{k+1} = \gamma_1 \Delta_k$ and return to Step 1 in the main framework.

34 / 49

- 1. Build a second-order model.
- 2.
- 3.
- 4. Perform the RC test, update the size of trust region:

- 1. Build a second-order model.
- 2.
- 3.
- 4. Perform the RC test, update the size of trust region:
	- (Reject), go to inner loop.

- 1. Build a second-order model.
- 2.
- 3.
- 4. Perform the RC test, update the size of trust region:
	- (Reject), go to inner loop.
	- **I** (Moderate accept) perform the SR test:
		- If passed,, return to Step 1 in the main framework.
		- Otherwise, go to inner loop.

- 1. Build a second-order model.
- 2.
- 3.
- 4. Perform the RC test, update the size of trust region:
	- \blacksquare (Reject), go to inner loop.
	- **I** (Moderate accept) perform the SR test:
		- If passed,, return to Step 1 in the main framework.
		- Otherwise, go to inner loop.
	- (Fully accept) perform the SR test:
		- If passed,......, return to Step 1 in the main framework.
		- Otherwise, go to inner loop.

Inner loop:

• Stages I and II both may find no satisfactory solution that can pass the RC and SR tests.

Inner loop:

- Stages I and II both may find no satisfactory solution that can pass the RC and SR tests.
- The inner loop is designed so that it can always find a satisfactory solution.

Inner loop:

- Stages I and II both may find no satisfactory solution that can pass the RC and SR tests.
- The inner loop is designed so that it can always find a satisfactory solution.

Process:

1. Set subiteration count $i = 0$. Let $n_{k_0} = n_0$, $m_{k_0} = m_0$, and $\Delta k_0 = \Delta k$.

Inner loop:

- Stages I and II both may find no satisfactory solution that can pass the RC and SR tests.
- The inner loop is designed so that it can always find a satisfactory solution.

Process:

- 1. Set subiteration count $i = 0$. Let $n_{k_0} = n_0$, $m_{k_0} = m_0$, and $\Delta k_0 = \Delta k$.
- 2. Let $i = i + 1$. Increase the sample sizes for the current and new solutions, satisfies

 $n_{k_i}^* \geq (1/\gamma_1^4 + 1)n_{k_{i-1}}^*$ $n_{k_i} = \max\{n_{k_{i-1}}, n_{k_i}^*\}.$

Inner loop:

- Stages I and II both may find no satisfactory solution that can pass the RC and SR tests.
- The inner loop is designed so that it can always find a satisfactory solution.

Process:

43 / 49

- 1. Set subiteration count $i = 0$. Let $n_{k_0} = n_0$, $m_{k_0} = m_0$, and $\Delta k_0 = \Delta k$.
- 2. Let $i = i + 1$. Increase the sample sizes for the current and new solutions, satisfies

 $n_{k_i}^* \geq (1/\gamma_1^4 + 1)n_{k_{i-1}}^*$ $n_{k_i} = \max\{n_{k_{i-1}}, n_{k_i}^*\}.$

3. Increase the sample size of the gradient estimator, satisfies

$$
m_{k_i} \ge (1/\gamma_1^2 + 1)m_{k_{i-1}}.
$$

- 4. Build a second-order model.
- 5. Solve the subproblem and obtain a new solution $x_{k_i}^*$.
- 6. Perform the RC test, update the size of trust region:

- 4. Build a second-order model.
- 5. Solve the subproblem and obtain a new solution $x_{k_i}^*$.
- 6. Perform the RC test, update the size of trust region:
	- (Reject), let $\Delta_{k_{i+1}} = \gamma_1 \Delta_{k_i}$, go back to Step 2 in inner loop.

- 4. Build a second-order model.
- 5. Solve the subproblem and obtain a new solution $x_{k_i}^*$.
- 6. Perform the RC test, update the size of trust region:
	- (Reject), let $\Delta_{k_{i+1}} = \gamma_1 \Delta_{k_i}$, go back to Step 2 in inner loop.
	- (Moderate accept), perform the SR test:
		- If passed,, return to Step 1 in the main framework.
		- Otherwise, go back to Step 2 in inner loop.

- 4. Build a second-order model.
- 5. Solve the subproblem and obtain a new solution $x_{k_i}^*$.
- 6. Perform the RC test, update the size of trust region:
	- (Reject), let $\Delta_{k_{i+1}} = \gamma_1 \Delta_{k_i}$, go back to Step 2 in inner loop.
	- (Moderate accept), perform the SR test:
		- If passed,, return to Step 1 in the main framework.
		- Otherwise, go back to Step 2 in inner loop.
	- (Fully accept), perform the SR test:
		- If passed,, return to Step 1 in the main framework.
		- Otherwise, go back to Step 2 in inner loop.

48 / 49

Thanks

Thanks for listening.