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Sample-path method

In this paper, we consider the following unconstrained stochastic
optimization problem:

min f(x) = E[F(x,&(w))]

xXERN

@ The sample response function F takes two inputs, the simulation
parameters x € R" and a random sample of £(w) in RY.

o f(x) is well defined.

@ The solution is x™*.
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Sample-path method

@ The sample-path method is sometimes called the Monte Carlo
sampling approach or the sample average approximation method.

@ The basic idea of the method is to approximate the expected value
function f(x) by averaging sample response functions.

N
Z (x,&)

F(x) = F¥(x) =

2 \

@ The averaged sample-path problem

. f.\N
)

serves as a substitute for the original problem.
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Sample-path method

@ An optimal solution x*" is then treated as an approximation of x*.

@ Under the assumption that the sequence of functions {f"V}
epiconverges to the function f, the optimal solution sequence {x*"N}
converges to x* almost surely for all sample paths.

Fig.1 Mechanism of the sample-path optimization method. Starting from x(), for a given N, a deterministic
algorithm is applied to solve the sample-path problem. The sequence of solutions {,\'**N] converges to the
true solution x* = x* almost surely
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Variable-number sample-path scheme

@ The new variable-number sample-path (VNSP) scheme is designed to
generate different numbers of samples () at each iteration.

@ The VNSP scheme integrates Bayesian techniques to determine Ny.

xt

0

Fig. 2 Mechanism of the new sample-path method with the VNSP scheme. Starting from .x(, the
algorithm generates its iterates across different averaged sample functions. In an intermediate iteration
k, it first computes a satisfactory N which guarantees certain level of accuracy, then an optimization step
is taken exactly the same as in problem (3), with N = Nj. The algorithm has a globally convergent solu-
tion x*Noowhere Noo := limg_, o0 Nj. The convergence is almost sure for all the sample paths, which
correspond to different runs of the algorithm. The solution, we will prove later, matches the solution x**°
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Variable-number sample-path scheme

o We require x, — x* almost surely, but we do not impose the
convergence condition V< — f. As a consequence, {N} is a
non-decreasing sequence with the limit value N, being either finite or
infinite.

@ A toy example:

F(x,&(w)) = ¢(x) +&(w)

o ¢(x) is a deterministic function and £(w) ~ N (0, 02).

o The solutions of £k are: x*! = x*2 = ... = x*>,

@ In this case, the VNSP scheme turns out to use a constant sequence
of sample numbers Ny : Ny = No = -+ = N < 4o00.

e We obtain limg_eo xx = x*M = ... = x*No = x* but obviousl
limg_yoo FN& £ f.
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The UOBYQA algorithm

We apply Powell's Unconstrained Optimization BY Quadratic
Approximation (UOBYQA) algorithm as our base sample-path
optimization solver.

@ The algorithm is a derivative-free approach.
@ The general structure of UOBYQA follows a model-based approach,

which constructs a chain of local quadratic models that approximate
the objective function.

@ The method is an iterative algorithm in a trust region framework.

o It differs from a classical trust region method in that it creates
quadratic models by interpolating a set of sample points instead of
using the gradient and Hessian values of the objective function.
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The UOBYQA algorithm

Basic assumptions regarding the nature of the objective function:

Assumption 1

For a fixed y € RY the function F(-,y) is twice continuously differentiable
and its gradient and Hessian are uniformly bounded on R” x R?. There
exist constants krg > 0 and kpg > 0, such that the following inequalities
hold:

F
MH < Kfg and sup

8X XGR",yeRd

O?F(x,y)
SUp —82)(

H < KFh
x€R" yeRd

| \

Assumption 2
For a fixed y € RY, the function F(-,y) and the underlying function f(-)

are bounded below on R".
e

e
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Interpolating quadratic model properties

At every iteration of the algorithm, a quadratic model
N N N T 1 T ~N
QR (x) = + (&) (X—Xk)+§(X—Xk) G (x —xk),

is constructed by interpolating a set of adequate points
Ik = {y17y2,-~-7)/l'}.

)=, i=12...L

o The coefficient ¢/ is a scalar, g} is a vector in R", and G} is an
n X n real symmetric matrix.

@ To ensure a unique quadratic interpolator, the number of
interpolating points should satisfy

1
L= E(n+1)(n+2)
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Interpolating quadratic model properties

For each quadratic interpolation model, we require that the Hessian matrix
is uniformly bounded.

The Hessian of the quadratic function QLV is uniformly bounded for all x in
the trust region, i.e., there exists a constant kgp > 0 such that

HGkNH < kon forall x € {x € R"| |x — x| < Ak}
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Interpolating quadratic model properties

The error of the approximation:

Lemma 1

Suppose Assumptions 1-3 hold and Zj is adequate in the trust region

By (Ak). Furthermore, if at iteration k, Q)Y is the interpolative
approximation model for the function fN then assume the bias of the
function value and the gradient are bounded within the trust region. Then
there exist constants Kem and keg , for each x € By (Ak), the following
inequalities hold

‘fN(x) — QLV(X)‘ < Kem Max [A2,Ai]

HV{C\N(X) = g,iVH < Keg max [Ag, A7]

=0

. . . Ay =\

Within a small trust region, the model Q) is also a decent S| =)=
approximation model. 2555
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Interpolating quadratic model properties

We have seen that Q,’(V interpolates the function fV at the points in Zy.
Let Q° be the 'expected’ quadratic model interpolating the function f at
the same points. The following lemma provides convergence of Q,'(V to Qp°.

Q) (x) converges pointwise to Qf°(x) with probability 1( w.p.1) as
N — oo

@ The law of large numbers (LLN) guarantees the pointwise
convergence of #V(x) to f(x) w.p.1.

@ By solving the system of linear equations, each component of the
coefficients of QY, ¢V, gN(i), GN(i,j), i,j =1,2,...,n, is uniquely
expressed as a linear combination of #V (y'), N (y') £V (y),
ij=1,2,..., L

@ Therefore, as N — oo the coefficients ¢, gV, G converge to c°,
g, G w.p.l.

o Finally, for a fixed value x € R", QY(x) converges to Qf°(x) w.p.1.
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The core algorithm

Starting the algorithm requires an initial trial point xg and an initial trust
region radius Ag. As in a classical trust region method, a new promising
point is determined from a subproblem:

min QY (xk +5s), subject to ||s|| < Ag
seR”

The new solution s*N is accepted (or not) by evaluating the 'degree of

agreement’ between N and Q:

pN _ fN (Xk) — fN (Xk + 5*’N)
QN (ki) — QY (xi + s*N)

If the ratio pQ’ is large enough, which indicates a good agreement beth n

. .2 . . AONID
the quadratic model Q) and the function ", the point xi + sV i 4=
accepted into the set 7.
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The core algorithm

We introduce the following lemma concerning the ‘sufficient reduction’
within a trust region step.

Lemma 3

The solution sZ’N of the subproblem satisfies

N
a2 mi lllgk |

QN (xk) — QY <xk + s*’N) > Kmde

for some constant kmdc € (0,1) independent of k.
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The core algorithm

Choose a starting point xp, an initial trust region radius Ag and a
termination trust region radius Agpq.
@ Generate initial trial points in the interpolation set Z,. Determine the
first iterate x; € T, as the best point in Zj.
@ For iterations k =1,2,...
» Determine Ny via the VNSP scheme in Sect. 2.3.
» Construct a quadratic model Q,ivk of the form (4) which interpolates

)

> Solve the trust region subproblem (20). Evaluate f¥« at the new point
xi + Nk and compute the agreement ratio pgk in (21).

points in Zy. If Hg,ika < €1 and Zy is inadequate in B (62 Hg,ivk
then improve the quality of Z.

> If pLV* > 11, then insert x, + 5™« into Zy. If a point is added to the set
Ty, another element in Z, should be removed to maintain the
cardinality |Zx| = L. If pka < m and Zy is inadequate in By,
improve the quality of Zy.
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The core algorithm

@ For iterations k =1,2,...
» Update the trust region radius Ay :

€ [Ak, 12A4], if ppe >
Agi1 S € [k, 1Ay, if pLVk < 1 and Zy is adequate in By (Ay)
= Ay, otherwise.

» When a new point x*is added into Z, if

AN N (3a0) — £V (xT)
k7 AN Ny %N, = Mo
Q" (xk) — Q* (xx + s:Mk)

then x,11 = x*, otherwise, xx 11 = k.

» Check whether any of the termination criteria is satisfied, otherwi
repeat the loop. The termination criteria include Ax < Acng a
hitting the maximum limit of function evaluations.
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Bayesian VNSP scheme

@ The goal of a VNSP scheme is to determine the suitable sample
number Ny to be applied at iteration k.

o In our algorithm, Q) (x) — QY (xx +s*V) is the observed model
reduction.

@ The key idea for the global convergence of algorithm is that, by
replacing g,iv with g2° in (22), we force the model reduction
QY (xk) — QY (xk + ™) to regulate the size of ||gg°||, and so drive
llgee| to zero.

@ We present the modified 'sufficient reduction’ criterion:

o0
QY () — QF (s + M) > Kimae [|g2° | min {lfi,hll’m}
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Bayesian VNSP scheme

To ensure the 'sufficient reduction’ criterion (27) is satisfied accurately, we
require

o0
Pr(E2') = Pr (@ (09— Q (s + 57) < e i min | 1EE L, )

< ay

o The event E)Y is defined as the failure of (27) for the current N
@ «y is the significance level.
@ In practice, the risk Pr (E,iv) is difficult to evaluate.

@ By adapting knowledge from Bayesian inference, we approximate the
risk value by a Bayesian posterior estimation based on the current

observations XN
Pr (E,f’) ~ Pr (E,iv | XN)
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Bayesian VNSP scheme

o The value Pr(E} | X") is thus called Bayes risk.

@ «y is the significance level.
@ Given the observations XV, we have

Pr (Eﬁ’ | x’V)
=P (02 () = Q¥ (3 5°) < e min | 21 ] 1 x)
oo N
= Pr <QLV (xx) — Q,iv (xk + s*’N) < Kmde ||85° | XNH min |:Hgk|XH,Ak:|)

@ The left-hand side Q,'(V (xk) — Q,'(V (xk + 5*’N) of the inequality
becomes a fixed quantity given XV. The probability evaluation is
computed with respect to the posterior distribution gg° | XN,
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Bayesian VNSP scheme

The Bayes risk Pr (E}Y | X"V) converges to zero as N — cc.

Lemma 4 guarantees that Pr (E}Y | X") < oy will eventually be satisfied
when N is large enough.
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Bayesian VNSP scheme

@ The exact evaluation of the probability is hard to compute, especially
. . . oo | XN
involving the component K mgc Hg,fo | XNH min [W, Ak] )

@ Instead we use the Monte Carlo method to approximate the

probability value:

@ We generate M random samples from the posterior distribution of
&> | XN . Based on the samples, we check the event of 'sufficient
reduction’ and make a count on the failed cases: Mg; .

@ The probability value is then approximated by

M .
Pr (E,f’ | X’V) ~ 7;;"

@ The approximation becomes accurate as M increases.
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The VNSP scheme

At the k th iteration of the algorithm, start with N = N,_;. Loop

Evaluate N replications at each point y/ in the interpolation set Zj,
to construct the data matrix XV. Note: data from previous iterations
can be included.

Construct the quadratic model Q/(V and solve the subproblem for

XK + s,

Update the value of kgn by (24).

Compute the Bayesian posterior distributions for the parameters of
Q° as described above.

Validate the Monte Carlo estimate (32). If the criterion is satisfied,
then stop with N, = N; otherwise increase N, and repeat the log
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The VNSP scheme

Two approximation steps (29) and (31) are employed in the computation.
The following assumptions formally guarantee that risk Pr (E,iv) is
eventually approximated by the Monte Carlo fraction value Mg /M.

Assumption 4

The difference between the risk Pr (E,ﬁv) and the Monte Carlo estimation
value is bounded by ¢

Under this assumption and the criterion (32), it implies

pr(El)| < \pr (gp) - Mei| |2

fail
M

< @k Yk _
- 2 2

M

l

which guarantees the accuracy of the ‘sufficient reduction’ criterion
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The VNSP scheme

The sequence of significance level values {ay} satisfy the property:

This allows the use of the Borel-Cantelli Lemma in probability theory.

Lemma 5 (First Borel-Cantelli Lemma)

Let {E]} be a sequence of events, and the sum of the probabilities of E}Y
is finite, then the probability of infinitely many E,ﬁv occur is 0.

The Borel-Cantelli Lemma provides that the events E,iV only happen
finitely many times w.p.1. Therefore, if we define K as the first successful
index after all failed instances, then (27) is satisfied w.p.1 for all iterations
k> K.
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Numerical results

Tgble 1 The performance of the new algorithm for the noisy Rosenbrock function, with n = 2 and
o= =0.01

Iteration k Ny FN Xk TNk () Ak

0 3 3 (—1.0000.1.2000) 11.7019 2.0

19 3 81 (0.5002.0.2449) 0.3616 0.1

20 4 91 (0.5002,0.2449) 0.4904 0.05
21 5 102 (0.5208,0.2904) 0.4944 0.02
22 22 226 (0.5082,0.2864) 0.4018 0.02
23 22 248 (0.5082.0.2864) 0.4018 0.02
24 30 326 (0.5082,0.2864) 0.5018 0.02
29 30 476 (0.4183,0.1862) 0.4447 0.04
30 113 1,087 (0.4328,0.1939) 0.4290 0.02
31 113 1.200 (0.4328.0.1939) 0.4290 0.02
32 221 1,848 (0.4328,0.1939) 0.4437 0.02
33 604 4,750 (0.4328.0.1939) 0.4601 0.01
35 604 5,958 (0.4276,0.1837) 0.4569 0.0125
36 845 8.249 (0.4197.0.1774) 0.4556 0.0101
37 1183 10.277 (0.4172,0.1760) 0.4616 0.0101
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Numerical results

Tablg 2 Avergyd sample-path N ka ()

solution with different sample ’

number N 3 (0541502778) 03499
4 (0.4302,0.1922) 0.4412
5 (0.4218,0.1936) 0.4395
22 (0.4695,0.2380) 0.3892
30 (0.4222,0.1896) 0.4446
113 (0.4423,0.2027) 0.4286
221 (0.4331,0.1910) 0.4427
604 (0.4226,0.1798) 0.4567
845 (0.4236,0.1807) 0.4556
1,183 0.4174,0.1761) 04615
00 (0.4162,0.1750) 0.4632

Tan Wang (FDU) Variable-Number Sample-path Optimization December 13, 2021 26 /29



Numerical results
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Fig. 5 Compare changes of Ny with different levels of noise
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Numerical results

Table3 Statistical summary

VNSP SP(10) SP(100) SP(1000)

. bl . .
n Noiselevelo=  Meanerror  Variance of error ~ Meanerror -~ Meanerror — Mean error

2001 Lle=3 12e=5 0,033 0.0045 19 -5
201 89 -5 33e-35 0079 0.0067 424
2 Lle-4  82-5 0.098 (.0088 89e -4
10001 0.054 0.067 044 PA] 120
10 01 0.087 0.060 21 4 129
101 26 0.10 14 ) 145
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