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Sample-path method

In this paper, we consider the following unconstrained stochastic
optimization problem:

min
x∈Rn

f (x) = E[F (x , ξ(ω))]

The sample response function F takes two inputs, the simulation
parameters x ∈ Rn and a random sample of ξ(ω) in Rd .

f (x) is well defined.

The solution is x∗.
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Sample-path method

The sample-path method is sometimes called the Monte Carlo
sampling approach or the sample average approximation method.

The basic idea of the method is to approximate the expected value
function f (x) by averaging sample response functions.

f (x) ≈ f̂ N(x) :=
1

N

N∑
i=1

F (x , ξi )

The averaged sample-path problem

min
x∈Rn

f̂ N(x)

serves as a substitute for the original problem.
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Sample-path method

An optimal solution x∗,N is then treated as an approximation of x∗.

Under the assumption that the sequence of functions {f̂ N}
epiconverges to the function f , the optimal solution sequence {x∗,N}
converges to x∗ almost surely for all sample paths.
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Variable-number sample-path scheme

The new variable-number sample-path (VNSP) scheme is designed to
generate different numbers of samples (Nk) at each iteration.

The VNSP scheme integrates Bayesian techniques to determine Nk .
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Variable-number sample-path scheme

We require xk → x∗ almost surely, but we do not impose the
convergence condition f̂ Nk → f . As a consequence, {Nk} is a
non-decreasing sequence with the limit value N∞ being either finite or
infinite.

A toy example:
F (x , ξ(ω)) = ϕ(x) + ξ(ω)

ϕ(x) is a deterministic function and ξ(ω) ∼ N
(
0, σ2

)
.

The solutions of f̂ k are: x∗,1 = x∗,2 = · · · = x∗,∞.

In this case, the VNSP scheme turns out to use a constant sequence
of sample numbers Nk : N1 = N2 = · · · = N∞ < +∞.

We obtain limk→∞ xk = x∗,N1 = · · · = x∗,N∞ = x∗, but obviously
limk→∞ f̂ Nk ̸= f .
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The UOBYQA algorithm

We apply Powell’s Unconstrained Optimization BY Quadratic
Approximation (UOBYQA) algorithm as our base sample-path
optimization solver.

The algorithm is a derivative-free approach.

The general structure of UOBYQA follows a model-based approach,
which constructs a chain of local quadratic models that approximate
the objective function.

The method is an iterative algorithm in a trust region framework.

It differs from a classical trust region method in that it creates
quadratic models by interpolating a set of sample points instead of
using the gradient and Hessian values of the objective function.
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The UOBYQA algorithm

Basic assumptions regarding the nature of the objective function:

Assumption 1

For a fixed y ∈ Rd the function F (·, y) is twice continuously differentiable
and its gradient and Hessian are uniformly bounded on Rn × Rd . There
exist constants κFg > 0 and κFg > 0, such that the following inequalities
hold:

sup
x∈Rn,y∈Rd

∥∥∥∥∂F (x , y)∂x

∥∥∥∥ ≤ κFg and sup
x∈Rn,y∈Rd

∥∥∥∥∂2F (x , y)

∂2x

∥∥∥∥ ≤ κFh

Assumption 2

For a fixed y ∈ Rd , the function F (·, y) and the underlying function f (·)
are bounded below on Rn.
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Interpolating quadratic model properties

At every iteration of the algorithm, a quadratic model

QN
k (x) = cNk +

(
gN
k

)T
(x − xk) +

1

2
(x − xk)

T GN
k (x − xk) ,

is constructed by interpolating a set of adequate points
Ik =

{
y1, y2, . . . , yL

}
,

QN
k

(
y i
)
= f̂ N

(
y i
)
, i = 1, 2, . . . , L

The coefficient cNk is a scalar, gN
k is a vector in Rn, and GN

k is an
n × n real symmetric matrix.

To ensure a unique quadratic interpolator, the number of
interpolating points should satisfy

L =
1

2
(n + 1)(n + 2)
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Interpolating quadratic model properties

For each quadratic interpolation model, we require that the Hessian matrix
is uniformly bounded.

Assumption 3

The Hessian of the quadratic function QN
k is uniformly bounded for all x in

the trust region, i.e., there exists a constant κQh > 0 such that∥∥∥GN
k

∥∥∥ ≤ κQh, for all x ∈ {x ∈ Rn | ∥x − xk∥ ≤ ∆k}
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Interpolating quadratic model properties

The error of the approximation:

Lemma 1

Suppose Assumptions 1-3 hold and Ik is adequate in the trust region
Bk (∆k). Furthermore, if at iteration k , QN

k is the interpolative

approximation model for the function f̂ N , then assume the bias of the
function value and the gradient are bounded within the trust region. Then
there exist constants κem and κeg , for each x ∈ Bk (∆k), the following
inequalities hold ∣∣∣f̂ N(x)− QN

k (x)
∣∣∣ ≤ κem max

[
∆2

k ,∆
3
k

]
∥∥∥∇f̂ N(x)− gN

k

∥∥∥ ≤ κeg max
[
∆k ,∆

2
k

]
Within a small trust region, the model QN

k is also a decent
approximation model.
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Interpolating quadratic model properties

We have seen that QN
k interpolates the function f N at the points in Ik .

Let Q∞
k be the ’expected’ quadratic model interpolating the function f at

the same points. The following lemma provides convergence of QN
k to Q∞

k .

Lemma 2

QN
k (x) converges pointwise to Q∞

k (x) with probability 1( w.p.1) as
N → ∞

The law of large numbers (LLN) guarantees the pointwise
convergence of f̂ N(x) to f (x) w.p.1.

By solving the system of linear equations, each component of the
coefficients of QN

k , c
N
k , gN

k (i), GN
k (i , j), i , j = 1, 2, . . . , n, is uniquely

expressed as a linear combination of f̂ N
(
y i
)
, f̂ N

(
y i
)
f̂ N

(
y j
)
,

i , j = 1, 2, . . . , L.

Therefore, as N → ∞ the coefficients cNk , gN
k , GN

k converge to c∞k ,

g∞
k , G∞

k w.p.1.

Finally, for a fixed value x ∈ Rn,QN
k (x) converges to Q∞

k (x) w.p.1.
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The core algorithm

Starting the algorithm requires an initial trial point x0 and an initial trust
region radius ∆0. As in a classical trust region method, a new promising
point is determined from a subproblem:

min
s∈Rn

QN
k (xk + s) , subject to ∥s∥ ≤ ∆k

The new solution s∗,N is accepted (or not) by evaluating the ’degree of
agreement’ between f̂ N and QN

k :

ρNk =
f̂ N (xk)− f̂ N

(
xk + s∗,N

)
QN

k (xk)− QN
k (xk + s∗,N)

If the ratio ρNk is large enough, which indicates a good agreement between

the quadratic model QN
k and the function f̂ N , the point xk + s∗,N is

accepted into the set Ik .
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The core algorithm

We introduce the following lemma concerning the ‘sufficient reduction’
within a trust region step.

Lemma 3

The solution s∗,Nk of the subproblem satisfies

QN
k (xk)− QN

k

(
xk + s∗,N

)
≥ κmdc

∥∥∥gN
k

∥∥∥min

[∥∥gN
k

∥∥
κQh

,∆k

]

for some constant κmdc ∈ (0, 1) independent of k .

This is an important but standard result in the trust region literature.
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The core algorithm

Choose a starting point x0, an initial trust region radius ∆0 and a
termination trust region radius ∆end .

Generate initial trial points in the interpolation set Ik . Determine the
first iterate x1 ∈ Ik as the best point in Ik .
For iterations k = 1, 2, . . .

▶ Determine Nk via the VNSP scheme in Sect. 2.3.

▶ Construct a quadratic model QNk

k of the form (4) which interpolates

points in Ik . If
∥∥∥gNk

k

∥∥∥ ≤ ϵ1 and Ik is inadequate in Bk

(
ϵ2

∥∥∥gNk

k

∥∥∥),
then improve the quality of Ik .

▶ Solve the trust region subproblem (20). Evaluate f̂ Nk at the new point
xk + s∗,Nk and compute the agreement ratio ρNk

k in (21).

▶ If ρNk

k ≥ η1, then insert xk + s∗,Nk into Ik . If a point is added to the set
Ik , another element in Ik should be removed to maintain the
cardinality |Ik | = L. If ρNk

k < η1 and Ik is inadequate in Bk ,
improve the quality of Ik .
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The core algorithm

For iterations k = 1, 2, . . .

▶ Update the trust region radius ∆k :

∆k+1


∈ [∆k , γ2∆k ] , if ρNk

k ≥ η1

∈ [γ0∆k , γ1∆k ] , if ρNk

k < η1 and Ik is adequate in Bk (∆k)

= ∆k , otherwise.

▶ When a new point x+is added into Ik , if

ρ̂Nk

k =
f̂ Nk (xk)− f̂ Nk (x+)

QNk

k (xk)− QNk

k (xk + s∗,Nk )
≥ η0

then xk+1 = x+, otherwise, xk+1 = xk .

▶ Check whether any of the termination criteria is satisfied, otherwise
repeat the loop. The termination criteria include ∆k ≤ ∆end and
hitting the maximum limit of function evaluations.
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Bayesian VNSP scheme

The goal of a VNSP scheme is to determine the suitable sample
number Nk to be applied at iteration k .

In our algorithm, QN
k (xk)− QN

k

(
xk + s∗,N

)
is the observed model

reduction.

The key idea for the global convergence of algorithm is that, by
replacing gN

k with g∞
k in (22), we force the model reduction

QN
k (xk)− QN

k

(
xk + s∗,N

)
to regulate the size of ∥g∞

k ∥, and so drive
∥g∞

k ∥ to zero.

We present the modified ’sufficient reduction’ criterion:

QN
k (xk)− QN

k

(
xk + s∗,N

)
≥ κmdc ∥g∞

k ∥min

[
∥g∞

k ∥
κQh

,∆k

]
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Bayesian VNSP scheme

To ensure the ’sufficient reduction’ criterion (27) is satisfied accurately, we
require

Pr
(
EN
k

)
= Pr

(
QN

k (xk)− QN
k

(
xk + s∗,N

)
< κmdc ∥g∞

k ∥min

[
∥g∞

k ∥
κQh

,∆k

])
≤ αk

The event EN
k is defined as the failure of (27) for the current N

αk is the significance level.

In practice, the risk Pr
(
EN
k

)
is difficult to evaluate.

By adapting knowledge from Bayesian inference, we approximate the
risk value by a Bayesian posterior estimation based on the current
observations XN

Pr
(
EN
k

)
≈ Pr

(
EN
k | XN

)
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Bayesian VNSP scheme

The value Pr
(
EN
k | XN

)
is thus called Bayes risk.

αk is the significance level.

Given the observations XN , we have

Pr
(
EN
k | XN

)
= Pr

(
QN

k (xk)− QN
k

(
xk + s∗,N

)
< κmdc ∥g∞

k ∥min

[
∥g∞

k ∥
κQh

,∆k

]
| XN

)
= Pr

(
QN

k (xk)− QN
k

(
xk + s∗,N

)
< κmdc

∥∥∥g∞
k | XN

∥∥∥min

[∥∥g∞
k | XN

∥∥
κQh

,∆k

])

The left-hand side QN
k (xk)− QN

k

(
xk + s∗,N

)
of the inequality

becomes a fixed quantity given XN . The probability evaluation is
computed with respect to the posterior distribution g∞

k | XN .

Tan Wang (FDU) Variable-Number Sample-path Optimization December 13, 2021 19 / 29



Bayesian VNSP scheme

Lemma 4

The Bayes risk Pr
(
EN
k | XN

)
converges to zero as N → ∞.

Lemma 4 guarantees that Pr
(
EN
k | XN

)
≤ αk will eventually be satisfied

when N is large enough.
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Bayesian VNSP scheme

The exact evaluation of the probability is hard to compute, especially

involving the component κmdc

∥∥g∞
k | XN

∥∥min

[
∥g∞

k |XN∥
κQh

,∆k

]
.

Instead we use the Monte Carlo method to approximate the
probability value:

We generate M random samples from the posterior distribution of
g∞
k | XN . Based on the samples, we check the event of ’sufficient

reduction’ and make a count on the failed cases: Mfail .

The probability value is then approximated by

Pr
(
EN
k | XN

)
≈ Mfail

M

The approximation becomes accurate as M increases.

Tan Wang (FDU) Variable-Number Sample-path Optimization December 13, 2021 21 / 29



The VNSP scheme

At the k th iteration of the algorithm, start with N = Nk−1. Loop

Evaluate N replications at each point y j in the interpolation set Ik ,
to construct the data matrix XN . Note: data from previous iterations
can be included.

Construct the quadratic model QN
k and solve the subproblem for

xk + s∗,N .

Update the value of κQh by (24).

Compute the Bayesian posterior distributions for the parameters of
Q∞

k as described above.

Validate the Monte Carlo estimate (32). If the criterion is satisfied,
then stop with Nk = N; otherwise increase N, and repeat the loop.
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The VNSP scheme

Two approximation steps (29) and (31) are employed in the computation.
The following assumptions formally guarantee that risk Pr

(
EN
k

)
is

eventually approximated by the Monte Carlo fraction value Mfail/M.

Assumption 4

The difference between the risk Pr
(
EN
k

)
and the Monte Carlo estimation

value is bounded by αk
2 ∣∣∣∣Pr (EN

k

)
− Mfail

M

∣∣∣∣ ≤ αk

2

Under this assumption and the criterion (32), it implies∣∣∣Pr (EN
k

)∣∣∣ ≤ ∣∣∣∣Pr (EN
k

)
− Mfail

M

∣∣∣∣+ ∣∣∣∣Mfail

M

∣∣∣∣ ≤ αk

2
+

αk

2
= αk ,

which guarantees the accuracy of the ‘sufficient reduction’ criterion (28).
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The VNSP scheme

Assumption 5

The sequence of significance level values {αk} satisfy the property:

∞∑
k=1

αk < ∞

This allows the use of the Borel-Cantelli Lemma in probability theory.

Lemma 5 (First Borel-Cantelli Lemma)

Let
{
EN
k

}
be a sequence of events, and the sum of the probabilities of EN

k

is finite, then the probability of infinitely many EN
k occur is 0.

The Borel-Cantelli Lemma provides that the events EN
k only happen

finitely many times w.p.1. Therefore, if we define K as the first successful
index after all failed instances, then (27) is satisfied w.p.1 for all iterations
k ≥ K .
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Numerical results
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Numerical results
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Numerical results
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Numerical results
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Thanks!
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