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 Instance-based: Simulated annealing (SA) (Kirkpatrick et al.
1983), genetic algorithms (GAs) (Srinivas and Patnaik 1994),
nested partitions (NP) (Shi and Olafsson 2000)

» Model-based: Cross-entropy (CE) (Rubinstein and Kroese
2004, De Boer et al. 2005), estimation of distribution
algorithms (EDAs) (Muhlenbein and Paab 1996)

+ Solving global optimization problems works with a
parameterized probabilistic model

» Generate candidate solutions(e.g., random samples)
» Update the probabilistic model to bias the future
search toward “better” solutions
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» Cross-entropy Method
+ A family of parameterized probability distribution
» Find the parameter that assigns maximum probability to the set of
optimal solutions

H(p,q) = — ip(wi)log(ﬂmi))

» KL divergence
» Measure how one probability distribution Q is different from
a second, reference probability distribution P

€
Dr1(pllg) = Zp z:)log(2 e ))
Dicsollg) = Z ) =3 pleoglala:)) — 3 e os(a(e:)) = ~H(p(z)) + [ > p(z:ogla(z:)]

i=1 i=1 i=1
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MRAS

» Resembles CE in that it works with a family of parameterized
distributions on the solution space

» Use a sequence of intermediate reference distributions to facilitate and
guide the updating of the parameters associated with the family of
parameterized distributions during the search process

» At each iteration of MRAS, candidate solutions are generated from the
distribution that possesses the minimum KL divergence with respect to
the reference model corresponding to the previous iteration

+ Construct the next distribution by minimizing the KL divergence with
respect to the current reference model, from which future candidate

solutions will be generated
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MRAS

* A new framework for global optimization, which allows
considerable flexibility in the choices of the reference models

» An instantiation of the MRAS method, which incorporates the key
ideas of CE and EDAs

» Explore the relationship between CE and MRAS
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» We consider the following global optimization problem:

x* €argmax H(x), ¥ CNR", (1)

xe#
where the solution space % is a nonempty set in i”, and
H(:):  — M is a deterministic function that is bounded
from below, i.e., 34 > —oo such that H(x) > M Vx € %X.

Throughout this paper, we assume that problem (1) has
a unique global optimal solution, i.e., 3x* € & such that
H(x)< Hx*)Vx£3" xe€®
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ASSUMPTION Al. For any given constant & < H(x*), the

set {x: H(x) = &} N has a strictly positive Lebesgue or
discrete measure.

Ensures that any neighborhood of the optimal solution z*
with a positive probability of being sampled.

AsSUMPTION A2. For any given constant & > 0,
Sup, .4, H(x) < H(x*), where As:={x: ||x —x*|| 26} N %,

and we define the supremum over the empty set to be —oc.

Since H(x) has a unigue global optimizer, Assumption 2
satisfied by many functions in practice.
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MRAS

+ Family of parameterized distributions: {f(-,6)8 € ©} , where © is
the parameter space.

+ kthiteration — f(-,6;) sampling distribution

» Evaluate candidate solutions and calculate a new parameter vector
0.1 € © according to a specific updating rule

» Repeat until a termination criterion is satisfied

A sequence of distributions {g:()} — reference distribution

* Look at the projection of {gx(-)} on the family of distributions

» Compute the new parameter vector #,,; — minimize KL
divergence
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MRAS

D(gr, f(+,0)) = By, [ln ]?(k)(:(;) ]

f 9 (z)vd(z)

Intuitively, f(-,6:+1) can be viewed as a compact representation
(approximation) of the reference distribution g

Consequently, the performance of this method will largely depend
on the choices of reference distributions
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MRAS

H(x)g (%)

&) = e ) v(@n)

VxeZ. 2)

Let go(x) > OV € X be an initial p.d.f/p.m.f by tilting the old

p.d.f/p.m.f with the performance function H(x).
EQL- 1 H(I)Z:I

Effs 1 [H(‘L”

E'W[H(et)]— fH(J) IH(GC)‘R vdx d

E,[H(z)] = > B, ,[H(z)]

Eas[HE]  [HG)? ()i
By [H(z)] [H(z) - gr(z)da

Ey, ,[H(2)!] = B, ,H(2)]" + Var(H(z))
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MRAS Algorithm

Throughout the analysis, we use Py () and Ej [-] to denote
the probability and expectation taken with respect to the
p.d.f/p.mf. f(-,6,), and I, to denote the indicator func-
tion, i.e.,

1 if event A holds,
Iy = _
0 otherwise.

Py (HX) 2 ) = [ Tuagoy f (x. 0 v(d)

Eq[H(X)]= [ HQ)f(x.0) v(d).
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MRAS Algorithm

Algorithm MRAS —Exact Version
+ Initialization:
pe(0,1]. e>0. S():R >R, f(z,0) >0V X

Set the iteration counterk =0

H )
» Step 1. Calculate the (1-p) quantile 4: 7
Vi = sup(l: Py (H(X) > 1) > p). > e

» Step 2. |fk=_= : A
Ver1 = Ye+1
el
elself_kjl. L Prer R

if Teri 2 te: T Pte
Vet1 = Vh+1 E: Y v

else: T % v
Frr1 = Ve
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MRAS Algorithm

Step 3. Updating the parameter vector

[[S(H(X))]"
f(X,0,)

0y, :=argmax Ey,
0O

IlH(X)zim)lnf(X,O)]. (3)

O, =arg max/ [S(H(x))]"I[H(_\,)>7k+I] In f(x, 0) v(dx).
¢ P4

Step4. k=k+1
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MRAS Algorithm

LEMMA 1. The parameter 0, , computed at the kth itera-
tion of the MRAS,, algorithm minimizes the KL-divergence
D(&415 £ (-, 0)), where

S(H(x))I{H(.\'Dﬂ.H } 8k (x)
E, [S(HX) 1x)57,,.1)
Vxe¥,k=1,2,..., and

gk+l(x) =

lnsq)

E9<,[1{H(X>>y‘.}/f(X, 90)]

ik E,[H(z)]  [H(z)- ge(x)da
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Convergence Analysis

Global convergence depends on the choice of the parameterized

distribution family.

MRAS focus on a particular family of distributions called the

natural exponential family(NEF)(cf., e.g., Morris 1982)

DEFINITION 1. A parameterized family of p.d.f’s/p.m.f.’s
{f(-,0), 0 € ® CR™} on ¥ is said to belong to the NEF
if there exist functions A(-): " — N, T'(-): R"* - R™, and
K(-): R — N such that

f(x,0) =exp{0'T(x) —K(8)}h(x) VOeO, 4)
where K(6) = In [ _,exp{0"T(x)}h(x) v(dx), and the
superscript 7 denotes the vector transposition. For the case

where f(-, 0) is a p.d.f., we assume that I'(-) is a continu-
ous mapping.
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Convergence Analysis

i=1

k
f(2;0) = h(z) - c(6) - exp{z wé(ﬂ)ti(m)}

* Possion A
S oAt
flz) =e™ T =exp{logA-x — A} o

e Binomial
flz) = (:)px(l —p)" " = exp{log(p) - = + nlog(1 — p)} (:)
e Normal
T) = ! ex 7{:c—,u)2
f(}_\/ﬁ P{ 5 }
_ x? z-p 4l log(c?)
‘Exp{_FJ“ 2207 2 }
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Convergence Analysis

ASSUMPTION A3. There exists a compact set 11 such that
the level set {x: H(x) = ¥,} N ¥ C II, where ¥y, =
sup {l: Py (H(X) 2 1) > p} is defined as in the MRAS,,
algorithm.

AsSUMPTION A4. The maximizer of Equation (3) is an
interior point of © for all k.

ASSUMPTION A5. sup,.e || exp{07T(x)}T(x)h(x)| is inte-
grable/summable with respect to x, where 0, I'(-), and h(-)
are defined as in Definition 1.

» Assumption A3 restricts the search of MRAS to some
compact set.

« Assumption A4 is satisfied when MRAS is posed as an
unconstrained optimization problem and Assumption A5
is satisfied by most NEFs.
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Convergence Analysis

LEMMA 2. If Assumptions A3—AS hold, then we have
E, [T(X)]=E, [T(X)] Yk=0,1,...,
where E, [-] and E, [-] denote the expectations taken

with respect to (-, 0;,,) and g, (-), respectively.

THEOREM 1. Let {6,, k = 1,2,...} be the sequence of
parameters generated by MRAS,. If € > 0 and Assump-
tions A1-AS are satisfied, then

lim E,,[I(X)] =T(x"), (5)

where the limit is component-wise.
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Convergence Analysis

* Remark
I'(-) is a one-to-one mapping — T'~!(limy,_,o, By, [['(z)]) = z*

The solution vector x will be a component of TI'(z) (e.g., multivariate
normal distribution — limy ., By, [[(z)] = x*

When the components of the random vector X =(X;, X,, ... X,) are
independent, i.e., each has a univariate p.d.f/p.m.f — I'(z) =z

If take the parameter € = 0, then Step 2 of MRAS is equivalent to

V1 = Mmazi<i<k1 | thus strict increment is bounded by min|H(z) — H(y)|
Thus, the assumption in Theorem 1 can be relaxedto € > 0
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Convergence Analysis

COROLLARY | (MULTIVARIATE NORMAL). For continuous
optimization problems in R", if multivariate normal p.d.f.’s
are used in MRAS,, i.e.,

f(x,6,)
1

NGO exp(—3 (x — )27 (x — ),

where 0, := (u;; 2;), € >0, and Assumptions A1-A4 are
satisfied, then

(6)

lim pu, =x* and lim 3, =0,,,,
k— 00

k— o0

where 0, ., represents an n-by-n zero matrix.

nxn

By Lemma 2, E, anv(ux)(2) = i1 = By, (2)
EszNV(,u,E) [(93 —w)(z — #)T] = Eg;..“(ﬂ?) [(m — pgs1)(z — Hk+1)T]
By Theorem 1, lim By, (X) =a* , lim By, [(X - ju)(X — )] =0
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Convergence Analysis

E, [{[S(HCO)N/ f (X, 0)H nx)55,,)X]

o (7)
e = B HISHC /X, 00 s,

and

o EallISCHOO/F X0 o X =) (X~ )]

Eg [{ISCHX)F/F (X, 00 1 x)55,.)]
(8)

COROLLARY 2 (INDEPENDENT UNIVARIATE). If the compo-
nents of the random vector X = (X,, ..., X,) are indepen-
dent, each has a univariate p.d.f./p.m.f. of the form

f(x;,0,)=exp(x;0,—K(3;))h(x;), U,eN Vi=1,...,n,
& >0, and Assumptions A1-AS are satisfied, then

}im EglX]=u" where Gpi={9:s.s00)
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Cross-Entropy Method

Algorithm CE: Deterministic Version of the CE Method
Step 1. Choose the initial p.d.f./p.m.f. f(-,6,), 6, € O.
Specify the parameter p € (0, 1] and a nondecreasing func-
tion ¢(-): N — RTU{0}. Set k =0.
Step 2. Calculate the (1 — p)-quantile vy, as

Yesr :=sup{l: Py (H(X) >1) > p}.
Step 3. Compute the new parameter

O41 = ar%rgax Ey, [@(H (X)) (x5, In f(X, 0)].
6

Step 4. If a stopping rule is satisfied, then terminate; oth-
erwise set k =k + 1 and go to Step 2.
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Cross-Entropy Method

LEMMA 3. The parameter 0,,, computed at the kth iter-
ation of the CE, algorithm minimizes the KL-divergence

D(gi51, f(-, 6)), where
<p(H(x))1{H(_‘.)>,/Hl}f(x, 0,)
Eek [‘P(H(X))I{H(X)>yk+|}]
VxeX,k=0,1,.... (9)

A+l( x) =

EeA [((p(H(X))I(H(X)>7L+| })2]
Eok [qD(H(X))I{H(X);yHI]]
2 Eg [¢(H(X)) i1 x)5y,,,)]-

Ege [0(HX)) 11(x)5y,.,,)] =
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Cross-Entropy Method

THEOREM 2. For the CE, algorithm, we have

Eem [QD(H(X))I{H(X);yM}] > Eok [SD(H(X))I{H(X);)/H,}]
Yk=0,1, ..

In the standard CE method, Theorem 2 implies the
monotonicity of the sequence {vy,: k=1,2,...}.

LEMMA 4. For the standard CE method (i.e., CE, with
¢(H(x))=1), we have

Vi Z Yip1 YA=0,1,....
ProoF. By Theorem 2, we have

Ey. Uinsye) 2 Eoinposy. )

1.€.,

PokH(H(X) 2 Vi) 2 Pok(H(X) Z Vi) 2P
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Cross-Entropy Method

LEMMA 5. Assume that:

(1) There exists a compact set 11 such that the level
set {x: H(x) >y }N% C1I for all k=1,2,..., where
Yi =sup{l: Py (H(X) >1) > p} is defined as in the CE,
algorithm.

(2) The parameter 6,., computed at Step 3 of the CE,
algorithm is an interior point of © for all k.

(3) Assumption AS is satisfied.

Then,

Ey,  [T(X)]=Eg [[(X)] Vk=0,1,....

* The difference between CE method and MRAS is that, where the
convergence of the reference model is guaranteed, the convergence
of the reference model in CE method relies on the choices of the
families of distributions and the value of the parameter p used.
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Monte Carlo version of MRAS

When quantile values and expectations can be valued exactly

[S(H(X))I"
f(X, k)

Or 11 := argmazEyg,

i I{H(X )2%i1 In f(=, 9)1

In practice we usually resort to its stochastic counterpart, where only a
finite number of samples are used and expected values are replaced
with their corresponding sample averages.

[S(H
011 = argmaz—
e pco N Z[ (X,

) H(X) 27, ) 10 f(is 9)]

where X, ..., Xy are i.i.d. random samples generated from
f(x,86,), 0, is the estimated parameter vector computed at
the previous iteration, and 7,,, is a threshold determined
by the sample (1 — p)-quantile of H(X,), ..., H(Xy).
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Monte Carlo version of MRAS

It is difficult to determined in advance the appropriate number of
samples. A sample size too small may cause fail to converge, whereas
too large may lead to high computational cost.

The parameter p will affect the performance of the algorithm. Large
values of p means almost all samples generated will be used to update
the probabilistic model, which could slow down the convergence
process.

Small values of p will require a large number of samples to be
generated at each iteration and result in significant simulation efforts.
Modified Monte Carlo version of MRAS — sample size N is adaptively
increasing and the parameter p is adaptively decreasing (Homem-de-
Mello 2007).
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Monte Carlo version of MRAS

* The parameter p and the sample size N may change from one
iteration to another.

» The rate of increase in the sample size is controlled by an extra
parameter o, > 1.

* The initial sample size is Ny, then after k increment, the sample
size will be approximately <N, .

ASSUMPTION A3'. There exists a compact set 11, such that
{x: H(x) > H(x*) — e} N % C Il,. Moreover, the initial
density/mass function f(x,6,) is bounded away from zero
on1l,, ie, f,:=inf, .y f(x,6,) >0.

Algorithm MRAS,—Monte Carlo version

o Initialization: Specify p, € (0, 1], an initial sample
size Ny > 1, € 20, a > 1, a mixing coefficient A € (0, 1],
a strictly increasing function S(-): W — M+, and an initial
p.df. f(x,0,) >0 VxeZ. Set 6, < 6, k < 0.
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Monte Carlo version of MRAS

e Repeat until a specified stopping rule is satisfied: AL

Step 1. Generate N, i.i.d. samples X},..., X\, accord- I 177722 AN
ing to £, 6) == (1= )/ (-, 6,) + Af (-, 6)- 1f—> 1= s

Step 2. Compute the sample (I — p;)-quantile \ed 1’;’;‘ 2 et &

Yer1(Pes Ni) == Hj_p,)n,), Where [a] is the smallest §5 o
integer greater than a, and H; is the ith order statistic of # P —> Pin

the sequence {H(X¥),i=1,..., N.}. Tt
Step 3. If k=0 or ¥, ,(py, N,) = ¥, +&/2, then 2 W) P < Hlok
3(a). Set Yiy1 < Yir1(Pis Ni)s Pryr < Prs Bt (o NI —> Py
Ny < N,. Tr®
else, find the largest p € (0, p,) such that P
Yer1(Ps N) 2 ¥+ €/2. Tk
3(b). If such a p exists, then set
Yis1 < Yis1(Ps Ni), Prsr < P ©)
Ny, < N,
3(c). else (if no such p exists), set ¥, < ¥, Pt s
Pt < Pis Nigy < [aN,]. K"_‘ —
endif Ve Y
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Monte Carlo version of MRAS

Step 4. Compute 5k +1 88

P 1 Nk S H X’\ X
0., =argmax — Z M
g0 N io f(X{", d,)

Ly, M FXE, 0). (12)

Step 5. Set k < k+ 1.

» In practice, the initial density can be chosen according to some
prior knowledge of the problem structure.

* One simple choice is the uniform distribution.

» Forces the algorithm to explore the entire solution space and to
maintain a global perspective during the search process.
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Monte Carlo version of MRAS

Step 3 of MRAS is used to extract a sequence of nondecreasing
thresholds and to determine the appropriate values of p and N to be
used in subsequent iterations.

ASSUMPTION A4'. The parameter vector ék +1 computed at
Step 4 of MRAS, is an interior point of © for all k.

It is important to note that the set {x: H(x) > ¥, X €
{Xf,..., X} }} could be empty if Step 3(c) is visited. If
this happens, the right-hand side of (12) will be equal to
zero, so any 0 € O is a maximizer, and we define 6, g = 0,
in this case.
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Convergence Analysis

Let g..,(-), k=0,1,..., be defined by

gk+1(-")
NGO VTIERN) | P
S ISHED I/ FXE, 8 xtyss.0)

= 13
if {x: H(x) > ¥y, x€{X],.... Xy )} # 2, {5

gi(x), otherwise,
where ¥, is given by

YVear(prs N)  if Step 3(a) is visited,
Yie1 7= Vi1 (P, Ni) i Step 3(b) is visited,
Yi if Step 3(c) is visited.

Wenhao Ying Model reference Adaptive Search Dec, 2021 33/49



Convergence Analysis

LEMMA 6. {f Assumptions A4’ and AS hold, then the
parameter 0, , computed at Step 3 of MRAS, satisfies

E; [[(X)]=E; [[(X)] Vk=0,1,....

The proof Lemma 6 is similar to the proof of Lemma 2.

LEMMA 7. For any given p' € (0,1), let vy, be the set of
(1—p ")-quantiles of H(X) with respect to the p.d.f./p.m.f.
£(-,6,), and let Fi(p*, N,) be the corresponding sample
quantile of H(XY), ..., H(X}, ), where f(-,8,) and N, are
defined as in MRAS and X", . X,‘Vk are i.i.d. with com-
mon density f(-, 5k). Then, the distance from )7; (p", N,) to
y[ tends to zero as k — oo w.p.1.
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Convergence Analysis

THEOREM 3. Let € > 0, and define the g-optimal set O, :=
{x: H(x) > H(x*) — e} N%. If Assumptions Al, A3, A4
and AS are satisfied, then there exists a random variable
T such that wp.1., # < oo, and

(1) w>Hx*)—eVk>H.

(2) E; ,[T(X)] € CONV(I'(G,)} Vk > F, where
CONV{I'(@,)} indicates the convex hull of the set I'(@,).

Furthermore, let B be a positive constant satisfying the
condition that the set {x: S(H(x)) > 1/B} has a strictly
positive Lebesgue/counting measure. If Assumptions Al,
A2, A3, A4, and AS are all satisfied and o > (BS*)
where S* := S(H(x")), then

(3) lim,_,  E; [T(X)] =T(x*) wp.1.
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Convergence Analysis

REMARK 4. Roughly speaking, the second result can be
understood as finite time e-optimality. To see this, con-
sider the special case where H(x) is locally concave on

the set @,. Let x,y € @, and n € [0,1] be arbitrary.
By the definition of concavity, we will have H(nx +
(1 =m)y) 2 nH(x) + (1 — n)H(y) > H(x*) — &, which
implies that the set @, is convex. If in addition I'(x) is
also convex and one-to-one on @, (e.g., multivariate normal
p.d.f.), then CONV{I'(@,)} =T'(@,). Thus, it follows that
I“‘(Ef;HI [T(X)])e@, Vk > w.p.l.
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Convergence Analysis

COROLLARY 3 (MULTIVARIATE NORMAL). For continuous
optimization problems in ", if multivariate normal p.d.f.’s
are used in MRAS |, i.e.,

1 o
——exp(— - B I - ),
Jemrg,

£>0, a> (BS*)% and Assumptions Al, A2, A3, and A4
are satisfied, then

f(x.0)=

w.p.l.

nxn

lim i, =x* and lim X, =0,
k=00 ko0
COROLLARY 4 (INDEPENDENT UNIVARIATE). If the compo-
nents of the random vector X = (X, X5, ..., X,) are inde-
pendent, each with a univariate p.d.f./p.m.f. of the form

f(x;,0)=exp(x, 9, —K(9,))h(x;), I,eN Vi=1,..., n,

>0, a> (BS*)?% and Assumptions Al, A2, A3, A4, and
AS are satisfied, then

lel E; [X]=x" wp.l, where 6, == ..., ).
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Convergence Proof

Proof of Theorem 1
Goal: h_mwa [F(X)] —F(x*)

S(H(x))I = x
(HOD 055,18 (%) VxeX.k=1.2.....
E, [S(HX)1x)55,..1]

Eé’k+l [S(H(X))I{H(X)Q?Hl ]]

_ * S a6
- [IsE@)Iaeads = [Istrent,) - ST

&1 (X):=

x))|" - I
ngk[S(Hzi] S }.} - gr(z)dz
B Egk[[S(H(X))]_I{H(X)27k+,}]
— EG[SH)) nxs7,..)]
E, [S(HX)px)57,,.)]-
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Convergence Proof

two cases: ¥, = H(x") and ¥, < H(x™).
Case 1. If y, = H(x")

81 (x) =0 Vx#x*

and

[SCH( N n=niey)

G (X)) = , =1 Vk>WN.
! Jo[SCH ) gy v(dx)
Hence, it follows immediately that
E, [TX)]=T(x") Vk>.J.
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Convergence Proof

Case 2. If y, < H(x")

E.k'u 1 [S(H(X))](H(X)27—A ‘:I]

2Eg‘[S(H(X))I[H(XiZy]H}] VkZ>2N-—1, (19)
X HIRX)
i.e., the s‘equence {E, [S(HX) hx)55,.4) k=1,2,...} l&'vs‘)}sa-—/—
converges. S
S. 1= Jim E, [S(HCOMxys5,] Al /
< 8= S(H(x")). (20) A

sl = {x: H(x) = 7,) N {x: S(H(x)) > (S* +5.,)/2} N .
st = {x: H(x) > max{¥,, S~ (($*+5,)/2)}}N%.
T SHO heg.)

8 (x) = ,l:[l E, [S(H(X))I{H(XD?,-H}]

- 81 (x).
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Convergence Proof

Because
i S(H('V))I{H(x>2iA+xl = S(H("'))l{llu)zi\} -
ko Eg [S(H(X)11(x)55,.,1] S,

Vxed,

we conclude that

Lliqnalggk(x) =00 Vxed.

Thus, by Fatou’s lemma, we have

li=: limglf_/' g (x)v(dx) > ]imi{lffi g (x) v(dx)
> f liminf g, (x) v(dx) = oo,

which is a contradiction. Hence, it follows that

Lll.n; E [S(HX) 5x)55,)]=5" 20

Wenhao Ying Model reference Adaptive Search Dec, 2021 41/ 49



Convergence Proof

IE,, [T(X)] - T(x")|
< [ IP) =T () gy (x) v(d)

= [ IP() =T () g (x) v(d), (22)
€
where € := {x: H(x) > y,} N% is the support of g,(-)
Vk>WN.
By the assumption on I'(-) in Definition 1, for any given
{ > 0, there exists a > 0 such that |x — x*|| < & implies
[[T(x)—=T(x*)|| < . With A; defined from Assumption A2,
we have from (22),
£, [T(X)] =T (x|

< f IT(x) — T(x*) | g (x) v(dx)
/\:iﬂl
* ./\_ﬁ, [IT(x) = T'(x*)|| g (x) v(dx)
<CH[ IP@-TE) g vy vEN. @)
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Convergence Proof

The rest of the proof amounts to showing that the second
term in (23) is also bounded. Clearly, the term ||['(x) —
I'(x*)|| is bounded on the set A; N €. We only need to find
a bound for g, (x).

Define S5 :=S* — S(sup, .4, H(x)). Because S(-) is strictly
increasing, we have S5 > 0. Thus, it follows that

S(H(x)) <S*—S; VxeA;NE. (24)

On the other hand, from (19) and (21), there exists NN
such that Vk > WV,

E, [S(HOO) (5(x)55,,)] = 8" = 355 (25)
1 SHE)) s _
gulx)=T] (HEN w51 g:(x) Yk F.

i Ee[S(HXN 5x)37,.,)]

§h g \kT -
gk(x)é(pis?z) g7(x) VxeA;NE V> T,
]
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Convergence Proof

|EG [MX0] =)
SCH s [P =T [ gx)w(d)

x€A5N

_ )i._( _
<{+ su I'x)—-TI(x* -_— V=N
o s 10 -1l (g

=(l+ sup [0(x) = T(x)|)¢ vk A

XEANE

where A is given by

N —mAXHfV ’va”+1n§/ln( quZ)-H

Because { is arbitrary, we have

lim E, [[(X)] =T(x").
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Numerical Examples

Table 1. Performance of different algorithms on benchmark problems H, — H; based on 100 independent replications

(standard errors are in parentheses).

MRAS, CE (v=0.7) CE (v=0.2) SA

Test

problems .‘7,' M, H} M, I7,-' M, Fl,‘ M,
H, 0.998 (3.8¢ —07) 100 2.22 (0.23) 61 0.998 (4.3e—09) 100 10.12 (0.92) 12
H, —10.15 (6.6e—07) 100 —8.38 (0.30) 72 -9.12 (0.11) 1 —6.62 (0.35) 1

H; 11.64 (5.4e—02) 0 74.68 (19.30) 0 22.63 (4.86) 0 2485 (23.59) 0
H, 32e—10 (1.8e—11) 100 1.9¢ +04 (2.8e+03) 0 2.5¢ —06 (7.5e—08) 100 68.19 (2.94) 0
H; 1.45 (6.4e—02) 47 1.00 (00e—00) 100 1.00 (4.6e—09) 100 75.69 (4.94) 0
Hg 4.7e — 03 (5.8¢ — 04) 55 1.5e — 04 (1.0e —04) 98 22e—04 (1.3e—04) 97 0.12 (9.7e—03) 0
H, 4.9e - 08(7.1e—09) 100 4.75 (1.07) 0 2.1e—03 (7.5e—05) 0 l.le+03 (93.4) 0
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Numerical Examples

Figure

Function value

20-D Rosenbrock

—— MRAS
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---CEv=02
—e— SA

2. Average performance of MRAS,, CE, and SA on selected benchmark problems.
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Numerical Examples

20-D Powel singular

20-D Trigonometric
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Numerical Examples

20-D Griewank 20-D Pintér
5.0 r y : , : 10 . . . - ‘ . .

Function value
Function value
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Thank you!
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