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Introduction

Idea behind the algorithm

This paper draw upon ideas from the following highly successful
techniques:

the shrinking ball method
COMPASS
surrogate models/metamodels/response surface methods
(RSMs)
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Introduction

Idea behind the algorithm

They propose an algorithm called surrogate-based promising
area search (SPAS) for solving Lipschitz continuous simulation
optimization problems.
SPAS proceeds iteratively by constructing and optimizing a
sequence of surrogate models,
which are approximations of the objective function on
promising subsets of the solution space
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Introduction

Idea behind the algorithm

Each iteration of the algorithm consists of the following steps:
1 Generate a set of candidate solutions by randomly sampling

from the promising region constructed in the previous iteration
2 Use the shrinking ball technique to estimate the performance

of the sampled solutions.
3 Use all candidate solutions generated thus far to build a

surrogate model of the objective function.
4 Optimize the surrogate model and construct a new promising

region that contains the optimal solution to the model.
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Idea behind the algorithm
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Introduction

Idea behind the algorithm

Intuitively, the shrinking ball method reduces the simulation
noise at a sampled solution by averaging observations at
solutions that are close to it, avoiding the need to allocate
multiple simulation replications to the same point.
The use of a promising area helps to concentrate the
computational effort on subsets of the solution space.
Additionally, the surrogate model is able to successively
predict the response surface of the objective function by using
past sampling information.
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Introduction

Idea behind the algorithm

Note that since the sampling of new solutions is performed
within the promising region (as opposed to the entire solution
domain),
the use of the surrogate model in our approach is not intended
to provide a global fit of the underlying response surface,
but rather aims to accurately predict the objective function
values at unsampled points within the current search area.
This facilitates the discovery of better solutions by intensifying
the search in the new promising area surrounding the best
point predicted by the model.
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Introduction

Locally convergent

Under some appropriate conditions, they show that the
sequence of surrogate model optimizers converges with
probability one to the set of local optimal solutions to the
original problem.
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Introduction

Relationship with trust region framework

The algorithm shares some similarities with a class of
algorithms developed under the so-called trust region
framework (e.g., Deng and Ferris 2009, Chang et al. 2013)
where the common idea is to use a low-order (linear or
quadratic) surrogate model to approximate the true response
surface over a predefined trust region and then adaptively
adjust the size of the region based on the approximation
quality of the model.
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Introduction

Relationship with trust region framework

However, unlike this approach, which does not use gradient
information,
the analysis of trust-region-based methods typically relies on
the twice differentiability of the objective function,
and some of these algorithms (e.g., Chang et al. 2013) also
require the use of gradient and Hessian estimates in
constructing local models and determining solution quality.
In addition, for highly nonlinear problems, because of the
limited approximation capability of low-order models, the trust
region radius in these algorithms may become very small,
which limits the size of the region to be explored.
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Introduction

Relationship with trust region framework

In contrast, SPAS adopts an interpolation-based fitting
strategy and allows for the use of more sophisticated yet
practical surrogate models.
Such models have been shown efficient in approximating
high-dimensional nonlinear functions,
and when used in conjunction with promising region search,
may quickly identify areas of the search space with
high-quality solutions at no extra simulation effort.
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Surrogate-Based Promising Area Search

Targeted problem

To solve the following general simulation optimization problem

min
x∈X

{H(x) = E[h(x, ϕ)]},

where the solution space X is a full-dimensional convex,
compact subset of Rd with nonempty interior.
We assume that the expectation cannot be computed
analytically and instead needs to be estimated.
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Surrogate-Based Promising Area Search

Mathematical notation

Nk is the number of candidate solutions sampled at the k th
iteration of the algorithm.
Λk is the set of sampled solutions at the k th iteration.
Vk is the collection of all candidate solutions sampled up to
the k th iteration,
{rk}k≥1 is a sequence of deterministic positive real numbers,
B(x, r) = {y ∈ X : d(x, y) < r} is an open ball of center x and
radius r.
For two given points x and y in X, we use d(x, y) to denote
the Euclidean distance between them,
whereas for a set A ⊆ X, the distance between a point x and
the set A is defined and denoted by d(x,A) = infy∈A d(x, y).
Finally, let Sk and Pk ⊆ X be the respective surrogate model
and promising area constructed at the k th iteration of SPAS.
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Surrogate-Based Promising Area Search

Algorithm Description

Step 0 Set the iteration counter k = 0,V0 = ∅, and
P0 = X.
Specify a small positive constant δ > 0, a
sequence of numbers {αk}k≥1 satisfying
αk ∈ [0, 1), ∀k, and a shrinking ball strategy
{rk}k≥1.
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Surrogate-Based Promising Area Search

Algorithm Description
step 1 Let k = k + 1.

Uniformly and independently sample a set of Nk
candidate solutions Λk =

{
xk

1, xk
2, , . . . , xk

Nk

}
from the current promising area Pk−1.
Let Vk = Vk−1 ∪ Λk.
Obtain the sample performance at each point in
Λk and use the shrinking ball method to
construct performance estimates H̃k(x) for all
x ∈ Vk as follows:

H̃k(x) =αk

∑
y∈B(x,rk)∩Vk

h(y)
|B (x, rk) ∩ Vk|

+ (1 − αk)

∑
y∈B(x,rk)∩Λk

h(y)
|B (x, rk) ∩ Λk|

where |A| represents the cardinality of a set A.
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Surrogate-Based Promising Area Search

Algorithm Description

Step 2 Build a surrogate model Sk(x) that interpolates
the objective function estimates H̃k(x) at all
sampled points x ∈ Vk.

Step 3 Optimize the surrogate model Sk(x) on Pk−1 to
obtain a minimizer x∗k,that is,
x∗k ∈ argminx∈Pk−1 Sk(x).
Construct a new promising area Pk based on x∗k
as follows:

Pk =

{
y ∈ X : d (y, x∗k) ≤ d

(
y, x + 2 (x − x∗k)

δ

d
(
x∗k′ , x

)) ,∀x ∈ Vk

}
.

Reiterate from Step 1 until a stopping condition is satisfied.
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Surrogate-Based Promising Area Search

Some remarks on promising area
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Surrogate-Based Promising Area Search

Some remarks on promising area

In Step 3, we construct a new promising subset Pk, which is
defined as the set of points in X whose distances to x∗k are less
than 2δ plus their distances to the set of sampled solutions.
The use of the constant δ > 0 ensures Pk to have a nonempty
interior and prevents it from degenerating into a single point
when the set of sampled points becomes dense in the
neighborhood of x∗k.
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Surrogate-Based Promising Area Search

Some remarks on promising area

This is conducted in a way that is very similar to the
COMPASS approach.
The major difference is that now the construction is based on
the best point predicted by the surrogate model rather than
the one with the current best estimated performance.
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Surrogate-Based Promising Area Search

Some remarks on promising area

The intuition is that when the solution space is continuous,
the current best sampled solution may be far from being
optimal;
consequently, using the point to directly construct the
promising area may result in the search of new solutions being
conducted in a region that is very distant from the set of true
(local) optimizers, leading to slow convergence or inferior local
solutions.
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Surrogate-Based Promising Area Search

Some remarks on promising area

The surrogate model, on the other hand, retains the previous
simulation information in predicting the simulation responses
at unsampled solutions.
Thus, if the model can correctly capture the behavior of the
true response surface, then its optimizer would be a more
reliable estimate of the true (local) optimal solution than the
best sampled solution itself.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Surrogate-Based Promising Area Search

Remarks on convex combination technique in step 2

Another subtle issue worth mentioning is that since the
construction of promising areas is adaptive, the performance
estimates obtained at successive iterations of the algorithm
are generally not independent.
For example, the sample performance h(x) at a point x
generated in the k th iteration will affect the shape and size of
the promising region Pk obtained at Step 3.
This will in turn determine the chance/likelihood of the points
to be produced in the next iteration.
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Surrogate-Based Promising Area Search

Remarks on convex combination technique in step 2

Thus, for a given sampled solution x ∈ Vk, the observations at
points that were generated preceding it are correlated,
and a straightforward estimation of its true performance H(x)
by averaging past observations (such as the shrinking ball
method) will result in an extra bias.
They address this issue by taking the estimator H̃k(x) as the
convex combination of the average of the observations
collected at all points in B (x, rk) ∩ Vk and the average of the
observations at points in B (x, rk) ∩ Λk.
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Surrogate-Based Promising Area Search

Remarks on convex combination technique in step 2

The second average in the combination only depends on
points sampled at the current iteration Λk and does not suffer
from the correlation bias, whereas the first term relies on past
sampling information and is hence biased.
This bias effect is discounted by putting a weight parameter
αk ∈ [0, 1) that diminishes as more points are generated.
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Surrogate-Based Promising Area Search

Remarks on convex combination technique in step 2

Intuitively speaking, since there are only a few points
generated in the early iterations, setting the initial values of
αk large (close to 1) helps to effectively use the performance
estimates collected at previously sampled points to reduce the
variance of the estimator.
On the other hand, as sampling gets more focused on the
current promising area, the variance of the second term
becomes smaller while the correlation bias accumulated in the
first term can be removed by letting αk decrease to zero.
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Surrogate-Based Promising Area Search

Relationship with other approaches

It is interesting to observe that in SPAS,
if there is no surrogate model and the promising area is taken
to be the entire feasible region in all iterations,
then the algorithm is identical to the deterministic shrinking
ball method discussed in Andradóttir and Prudius (2010).
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Surrogate-Based Promising Area Search

Relationship with other approaches

On the other hand, if the solution space is (discrete) integer
ordered, then since each ball B (x, rk) will only contain x itself
(when rk becomes small enough), the shrinking ball strategy
reduces to the usual sample average approximation.
Thus, the algorithm (without the surrogate model) reduces to
the COMPASS algorithm.
In this respect, SPAS can essentially be seen as the extension
of COMPASS to continuous simulation optimization.
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Local Convergence of SPAS

Some definations

We define

Fk = σ {Λ1, {h(x), x ∈ Λ1} , . . . ,Λk, {h(x), x ∈ Λk}} , k = 1, 2, . . .

as the sequence of increasing σ-fields generated by the set of
all sampled solutions and their corresponding sample
performance measures obtained up to iteration k.
In the rest of the paper, Fk denotes the uniform sampling
measure (conditional on Fk−1 ) used at the k th iteration,
a sequence ak is said to be Ω(kn) if ∃c > 0 and k0 > 0, s.t.
∀k ≥ k0, ak ≥ ckn

and to be Θ(kn) if ∃c1, c2 > 0 and k0 > 0, s.t.
∀k ≥ k0, c1kn ≤ ak ≤ c2kn.
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Local Convergence of SPAS

Assumptions

Assumption 1 (A1)
The objective function H(x) is Lipschitz continuous on X with
Lipschitz constant L1.

Assumption 2 (A2)
Conditional on Fk−1 and given Λk, the simulation noises
h(x)− H(x) at all x ∈ Λk are independent with mean zero. In
addition, h(x)− H(x) is uniformly bounded on X, that is, there
exists 0 < B <∞ such that |h(x)−H(x)| < B for all x ∈ X w.p.1.
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Local Convergence of SPAS

Assumptions

Assumption 3 (A3)
The surrogate model Sk(x) satisfies Sk(x) = H̃k(x),∀x ∈ Vk.
Moreover, all Sk ’s are Lipschitz continuous on X with their
Lipschitz constants uniformly bounded by L2 for all k w.p.1.

Assumption 4 (A4)
Nk = Θ(kt) , rk = Ω

(
k−p/d) with limk→0 rk = 0, where t and pare

two positive constants satisfying p < t. The weight parameter αk
satisfies αk ∈ [0, 1)∀k and limk→∞ αk = 0.
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Local Convergence of SPAS

Convergence analysis

Let M be the set of all local minimizers.
Our main result is to show that the sequence of the surrogate
model minimizers {x∗k}k≥1 will converge to M with
probability one.
Our analysis proceeds in several steps. First, we prove the
following result, which implies that the collection of sampled
solutions will eventually become dense in Pk.

Lemma 1
For any ϵ > 0 and xk−1 ∈ Pk−1, define the event
Ak (xk−1, ϵ) = {∃y ∈ Λk, d (xk−1, y) < ϵ}. If Assumption A4 holds,
then

∑∞
k=1 P

(
Āk (xk−1, ϵ) | Fk−1

)
<∞ w.p.1.
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Local Convergence of SPAS

Convergence analysis

The next result shows that for any point x in the promising
area Pk−1, its true objective function value H(x) can be
closely approximated by the surrogate model Sk(x) as the
number of iterations gets large.

Lemma 2
If Assumptions A1 − A4 hold, then for any ϵ > 0 and xk−1 ∈ Pk−1,
we have

∑∞
k=1 P (|Sk (xk−1)− H (xk−1)| > ϵ |Fk−1) <∞ w.p.1.
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Local Convergence of SPAS

Convergence analysis

The next result is a strengthened version of Lemma 2 , which
shows that the objective function H(x) can be closely
approximated by the surrogate model Sk(x) uniformly for all
points x in the promising area Pk−1.

Proposition 1
If Assumptions A1 − A4 hold, then for any ϵ > 0,
P
(
maxx∈Pk−1 |Sk(x)− H(x)| > ϵ i.o.) = 0.
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Convergence analysis

Since x∗k ∈ argminx∈Pk−1 Sk(x) and Sk(x) is close to H(x)
uniformly over Pk−1,
it is reasonable to expect that H (x∗k) should also be close to
the minimum of the function H(x) over the promising area
Pk−1. This intuition is formalized next.

Lemma 3
If Assumptions A1 − A4 hold, then for any ϵ > 0,
P
(∣∣H (x∗k)−minx∈Pk−1 H(x)

∣∣ > ϵ i.o. ) = 0.
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Convergence analysis

In addition, since Sk(x) is uniformly close to the true objective
function H(x) on Pk−1,
Proposition 1 also suggests that the distance between x∗k and
the set of minimizers of H on the promising area Pk−1 will
approach zero as k tends to infinity.
This leads to Proposition 2 .

Proposition 2
If Assumptions A1-A4 hold, then

P
(

lim
k→∞

d
(

x∗k, argmin
x∈Pk−1

H(x)
)

= 0
)

= 1.
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Convergence analysis

Finally, we arrive at the following convergence result for the
SPAS algorithm.

Theorem 1
If Assumptions A1 − A4 hold, then

P
(

lim
k→∞

d (x∗k,M ) = 0
)

= 1.
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2 Surrogate-Based Promising Area Search

3 Local Convergence of SPAS

4 Numerical Examples



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Examples

Implementation of the algorithm

The surrogate model is constructed using the radial basis
function (RBF) approximation method, which has been
successfully used as a curve fitting tool in surrogate-based
optimization.
The specific approximator considered here is a linear
combination of RBFs of the following form:
Sk(x) =

∑|Vk|
i=1 wiψ (∥x − xi∥), where ψ(r) = r3, xi are the

sampled solutions, and wi are the weights of the basis
functions, which can be computed by solving a system of
linear equations.
Note that since ψ is chosen to be a polynomial of degree 3 ,
the derivative of Sk(x) admits an explicit expression and its
minimization over the promising area at Step 3 of the
algorithm can be conveniently carried out using a
straightforward gradient descent method.
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Implementation of the algorithm

The surrogate model is constructed using the radial basis
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optimization.
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Sk(x) =
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i=1 wiψ (∥x − xi∥), where ψ(r) = r3, xi are the

sampled solutions, and wi are the weights of the basis
functions, which can be computed by solving a system of
linear equations.
Note that since ψ is chosen to be a polynomial of degree 3 ,
the derivative of Sk(x) admits an explicit expression and its
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Implementation of the algorithm

The surrogate model is constructed using the radial basis
function (RBF) approximation method, which has been
successfully used as a curve fitting tool in surrogate-based
optimization.
The specific approximator considered here is a linear
combination of RBFs of the following form:
Sk(x) =

∑|Vk|
i=1 wiψ (∥x − xi∥), where ψ(r) = r3, xi are the

sampled solutions, and wi are the weights of the basis
functions, which can be computed by solving a system of
linear equations.
Note that since ψ is chosen to be a polynomial of degree 3 ,
the derivative of Sk(x) admits an explicit expression and its
minimization over the promising area at Step 3 of the
algorithm can be conveniently carried out using a
straightforward gradient descent method.
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Deterministic Functions with Added Noise

Tests were performed on 10 deterministic functions with
added noise.
These functions are well known and have been widely used in
the literature to investigate the performance of various
optimization algorithms.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Examples

Deterministic Functions with Added Noise

In particular, problems h1, h2, and h3 are unimodal, each with
a unique local (global) minimizer.
Functions h4 and h5 are low-dimensional problems with a few
local minima,
while the last five functions h6 − h10 are highly multimodal
with the number of local minima grows exponentially with the
problem dimension.
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Deterministic Functions with Added Noise

In each case, the added noise is assumed to follow a zeromean
truncated normal distribution T N

(
0, σ2), which is the

normal distribution N
(
0, σ2) truncated over the region

[−3σ, 3σ].
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Deterministic Functions with Added Noise

For comparison purposes, they have also applied the
simultaneous perturbation stochastic approximation (SPSA)
algorithm and the STRONG method on the 10 testing
problems.
To further illustrate the benefit of using surrogate models in
the proposed algorithm, they have also included a simplified
version of SPAS, called PAS.
PAS has the same structure as SPAS but without the
surrogate model approximation step, and the promising region
is constructed at each iteration based on the current best
sampled solution.
Thus, PAS is essentially a version of COMPASS applied to
continuous simulation optimization.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Numerical Examples

Deterministic Functions with Added Noise
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Deterministic Functions with Added Noise
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Deterministic Functions with Added Noise
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An Inventory Control Example

They also consider a discrete-time (s,S) inventory control
problem with independent and identically distributed
exponentially distributed demands.
The inventory level is reviewed at the beginning of each time
period.
When the inventory position falls below the level s, an order is
placed to increase the inventory position to S.
The objective is to find the optimal threshold values, s∗ and
S∗, in order to minimize the long-run average cost per period.
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An Inventory Control Example
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An Inventory Control Example
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Conclusions

In this paper, by integrating ideas from the shrinking ball
method, surrogate model approximation, and promising region
search, we have proposed a novel approach, called SPAS, for
solving Lipschitz continuous simulation optimization problems.
Under appropriate conditions, we have shown that the
algorithm converges almost surely to the set of local optimal
solutions.
The performance of SPAS has been illustrated on a set of 10
benchmark testing problems and an inventory control example.
Empirical results on these examples indicate that the
algorithm is promising and may significantly outperform some
existing methods that exploit gradient information.
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Extension

Surrogate model can be neural network or Kriging.
Nk may only need to be a constant.
Correlation bias issue may can also be tackled with martingale
approach.
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Thanks for listening !
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