Bayesian Optimization for Simulation Optimization of Continuous Parameters

Jianzhong Du

Fudan University

December 27, 2021

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Outline

- 2 Bayesian Optimization
- **3** Acquisition Functions for Sampling
- 4 Remaining Issues

3

2/65

Outline

1 Introduction

- 2 Bayesian Optimization
- 3 Acquisition Functions for Sampling

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

- 4 Remaining Issues
- 5 Summary

Simulation Optimization

- Evaluate the performance of a system design.
- 2 Select the best design $\mathbf{x}^* = \arg \min_{\mathbf{x}} y(\mathbf{x})$.

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Types of Design Variables and Samples

- Sample types:
 - Noiseless
 - 2 Noisy
- Variable types.
- Today's topic: Continuous variables + noiseless/noisy samples

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Outline

Study Goal: Bayesian optimization for simulation optimization of continuous parameters.

- Noiseless samples:
 - Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J]. *Journal of Global optimization*, 1998, 13(4): 455-492. (citations: 6538)
- 2 Noisy samples:
 - Scott W, Frazier P, Powell W. The correlated knowledge gradient for simulation optimization of continuous parameters using gaussian process regression[J]. *SIAM Journal on Optimization*, 2011, 21(3): 996-1026.

- 3

Outline

1 Introduction

2 Bayesian Optimization

3 Acquisition Functions for Sampling

4 Remaining Issues

5 Summary

Components of Bayesian Optimization

- A typical Bayesian optimization consists of two parts:
 - Gaussian process (stochastic kriging): predicting function values.
 - Sampling methods: determining the design point that should be sampled. (This slides discuss two acquisition functions (figure of merit): EI and KG.)

6/65

- 4 同 1 4 日 1 4 日 1

Outline

Introduction

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods
- 3 Acquisition Functions for Sampling
 - Simulation Optimization with Noiseless Samples
 - Simulation Optimization with Noisy Samples
 - Calculation
- Remaining Issues
 - Model Validation
 - Identifying Important Factors

Summary

Surrogates

- Goal: to predict surface values $y(\mathbf{x}), \mathbf{x} \in \mathcal{X}$, given a limited number of random observations $Y(\mathbf{x}^i), i = 0, 1, \ldots, n$.
- Typical surrogates:
 - Linear basis function models.
 - ② Gaussian process.
- Relationship: they can be unified through the ridge regularization (Hong and Zhang, 2021).

7/65

・ロト ・ 同ト ・ ヨト ・ ヨト

Two examples

- GP regression can capture fluctuated surfaces easily.
- However, linear basis function model can also achieve it.
- Advantage of GP: Bayesian learning.

Jianzhong Du (Fudan)

An example (Continued)

• Bayesian learning: construct Bayesian credible region (analogous to confidence intervals in frequentist statistics).

Outline

Introduction

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods
- 3 Acquisition Functions for Sampling
 - Simulation Optimization with Noiseless Samples
 - Simulation Optimization with Noisy Samples
 - Calculation
- Remaining Issues
 - Model Validation
 - Identifying Important Factors

Summary

Learning Targets

December 27, 2021

A B +
 A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E → ★ E →

ъ

Subjective v.s. Objective. Let's flip a coin:

- Objective: the probability that a coin has a head is 1/2 (or 1/3 if the coin is uneven).
- Subjective: I think the probability that a coin has a head is within [1/3, 2/3] and has an uniform distribution.

Bayesian prior and posterior are subjective probabilities.

11/65

・ロト ・ 同ト ・ ヨト ・ ヨト

• Suppose we want to learn the value of $y(\mathbf{x}^0)$ (for short, $y(\mathbf{x}^0) := y$). The random sample satisfies $E[Y_i] = y$.

- The unknown value y is regarded as a random variable.
- Subjective belief: $P(y \le y_1) = 0.2$, $P(y \le y_2) = 0.5$, $P(y \le y_3) = 0.7$, Can be a distribution.
- We sequentially update the belief toward its value: $\Pi^0, \Pi^1, \ldots, \Pi^T$.

• Filtration:

• Example: Given y, the sample Y_1 follows $\mathcal{N}(y, 1/\tau)$ (τ is known).

- Before observing Y_1 , note that $Y_1 = y + (Y_1 y)$.
- In our belief, the prior of y as $\mathcal{N}(\mu^0, 1/\tau^0)$.
- Sample noise $Y_1 y \sim \mathcal{N}(0, 1/\tau)$, independent of y's belief.
- So, in our belief, $Y_1 \sim \mathcal{N}(\mu^0, 1/\tau^0 + 1/\tau)$. (predictive distribution of Y_1)

Jianzhong Du (Fudan)

Image: A matrix

- Example: Given y, the sample follows $\mathcal{N}(y, 1/\tau)$ and τ is known.
 - Given \mathcal{F}^0 and before observing Y_1 , the joint distribution of $(y, Y_1)^\top$:

$$(y, Y_1)^{\top} \sim \mathcal{N}\left((\mu^0, \mu^0)^{\top}, \begin{pmatrix} 1/\tau^0 & 1/\tau^0 \\ 1/\tau^0 & 1/\tau^0 + 1/\tau \end{pmatrix}\right).$$

Hint:

 $\operatorname{Cov}(y, Y_1) = \operatorname{Cov}(y, y + (Y_1 - y)) = \operatorname{Cov}(y, y) + \operatorname{Cov}(y, Y_1 - y) = 1/\tau^0.$ • The conditional distribution of y given Y_1 is

$$y|Y_1 \sim \mathcal{N}\left(\frac{\tau^0\mu^0 + \tau Y_1}{\tau^0 + \tau}, \frac{1}{\tau + \tau^0}\right) \triangleq \mathcal{N}(\mu^1, 1/\tau^1).$$

(the posterior distribution of y after observing Y_1)

Jianzhong Du (Fudan)

Bayesian Optimization

• Example: Given y, the sample follows $\mathcal{N}(y, 1/\tau)$ and τ is known.

- Given $\Pi^0 = \mathcal{N}(\mu^0, 1/\tau^0), \ \mu^1 = \frac{\tau^0 \mu^0 + \tau Y_1}{\tau^0 + \tau}$ is random due to Y_1 .
- Note that the predictive distribution of Y_1 is

$$\mathcal{N}(\mu^0, 1/\tau^0 + 1/\tau).$$

• The predictive distribution of $\mu^1 = \frac{\tau^0 \mu^0}{\tau^0 + \tau} + \frac{\tau}{\tau^0 + \tau} Y_1$ given \mathcal{F}^0 is

$$\mathcal{N}\left(\mu^{0}, \frac{\tau}{\tau^{0}(\tau^{0}+\tau)}
ight).$$

- In summary, we have learned given \mathcal{F}^0 ,
 - the predictive distribution of Y_1 and μ^1 before observing Y_1 ,
 - the posterior distribution of y ($\Pi^1 = \mathcal{N}(\mu^1, 1/\tau^1)$) after observing Y_1 .

Jianzhong Du (Fudan)

15/65

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

A 3 5 A 3 5 5

3

16/65

- Example: Given y, the sample follows $\mathcal{N}(y, 1/\tau)$ and τ is known.
 - Given \mathcal{F}^1 and before observing Y_2 ,
 - the predictive distribution of Y_2 is $\mathcal{N}(\mu^1, 1/\tau^1 + 1/\tau)$.
 - the predictive distribution of μ^2 is $\mathcal{N}\left(\mu^1, \frac{\tau}{\tau^1(\tau^1+\tau)}\right)$
 - Given \mathcal{F}^2 (given \mathcal{F}^1 and after observing Y_2), the posterior distribution of y is $\mathcal{N}(\mu^2, 1/\tau^2)$, where

$$\begin{aligned} \tau^2 = &\tau + \tau^1 = 2\tau + \tau^0, \\ \mu^2 = &\frac{\tau^1 \mu^1 + \tau Y_2}{\tau^1 + \tau} = \frac{\tau^1 \frac{\tau^0 \mu^0 + \tau Y_1}{\tau^0 + \tau} + \tau Y_2}{2\tau + \tau^0} = \frac{\tau^0 \mu^0 + \tau Y_1 + \tau Y_2}{2\tau + \tau^0}. \end{aligned}$$

Jianzhong Du (Fudan)

December 27, 2021

• Example: Given y, the sample follows $\mathcal{N}(y, 1/\tau)$ and τ is known.

- Given \mathcal{F}^{n-1} and before observing Y_n ,
 - the predictive distribution of Y_n is $\mathcal{N}(\mu^{n-1}, 1/\tau^{n-1} + 1/\tau)$.
 - the predictive distribution of μ^n is $\mathcal{N}\left(\mu^{n-1}, \frac{\tau}{\tau^{n-1}(\tau^{n-1}+\tau)}\right)$
- Given \mathcal{F}^n (given \mathcal{F}^{n-1} and after observing Y_n), the posterior distribution of y is $\mathcal{N}(\mu^n, 1/\tau^n)$, where

$$\tau^{n} = \tau + \tau^{n-1} = n\tau + \tau^{0},$$

$$\mu^{n} = \frac{\tau^{n-1}\mu^{n-1} + \tau Y_{1}}{\tau^{n-1} + \tau} = \frac{\tau^{0}\mu^{0} + \tau (Y_{1} + Y_{2} + \dots + Y_{n})}{n\tau + \tau^{0}}.$$

• Question 1: what if the observation has no noise, i.e., $\tau = \infty$? $(y|y \sim \mathcal{N}(y,0))$

Conjugate Family II

- Conjugacy: the posterior distribution is in the same family as the prior distribution.
- Other conjugate families:

Sampling Distribution	Conjugate Family
Exponential	Gamma
Poisson	Gamma
Uniform	Pareto
Bernoulli	Beta
Normal with unknown variance	Normal-Gamma

- Non-conjugate priors: posterior may not be analytically tractable.
 - numerical calculation: Markov chain Monte Carlo, importance sampling.

・ロト ・ 同ト ・ ヨト ・ ヨト

Bayesian Learning of Multivariate Normal

• A vector $\mathbf{y} = (y(\mathbf{x}^1), y(\mathbf{x}^2), \dots, y(\mathbf{x}^d))^\top$ to estimate.

- The sample at \mathbf{x}^i is normal: $\mathcal{N}(y(\mathbf{x}^i), \lambda(\mathbf{x}^i))$.
- Set the prior Π^0 as $\mathcal{N}(\mu^0, \Sigma^0)$. The posterior distribution Π^1 after observing $Y(\mathbf{x}^{i_0})$ is $\mathcal{N}(\mu^1, \Sigma^1)$ where

$$\boldsymbol{\mu}^{1} = \boldsymbol{\mu}^{0} + \Sigma^{0} e_{\mathbf{x}^{i_{0}}} \left(\Sigma^{0}(\mathbf{x}^{i_{0}}, \mathbf{x}^{i_{0}}) + \lambda(\mathbf{x}^{i_{0}}) \right)^{-1} \left(Y(\mathbf{x}^{i_{0}}) - \mu^{0}(\mathbf{x}^{i_{0}}) \right)$$

$$\Sigma^{1} = \Sigma^{0} - \Sigma^{0} e_{\mathbf{x}^{i_{0}}} \left(\Sigma^{0}(\mathbf{x}^{i_{0}}, \mathbf{x}^{i_{0}}) + \lambda(\mathbf{x}^{i_{0}}) \right)^{-1} \left(\Sigma^{0} e_{\mathbf{x}^{i_{0}}} \right)^{\top}$$

• Hint: $\mathbf{\Pi}^1 = (y(\mathbf{x}^1), y(\mathbf{x}^2), \dots, y(\mathbf{x}^d))^\top | Y(\mathbf{x}^{i_0}).$

3

Answer to Questions for Noiseless Sampling

• Question 2: what if the observation has no noise, i.e., $\lambda(\mathbf{x}^n) = 0$? Prior:

$$(y(\mathbf{x}^0), y(\mathbf{x}))^\top \sim \mathcal{N}\left(\left(\begin{array}{c} \boldsymbol{\mu}^0(\mathbf{x}^0) \\ \boldsymbol{\mu}^0(\mathbf{x}) \end{array} \right), \left(\begin{array}{cc} \boldsymbol{\Sigma}^0(\mathbf{x}^0, \mathbf{x}^0) & \boldsymbol{\Sigma}^0(\mathbf{x}, \mathbf{x}^0) \\ \boldsymbol{\Sigma}^0(\mathbf{x}^0, \mathbf{x}) & \boldsymbol{\Sigma}^0(\mathbf{x}, \mathbf{x}) \end{array} \right) \right)$$

Posterior:

$$\begin{array}{l} (y(\mathbf{x}^{0}), y(\mathbf{x}))^{\top} | y(\mathbf{x}^{0}) \sim \\ \mathcal{N} \left(\begin{pmatrix} y(\mathbf{x}^{0}) \\ \mu^{0}(\mathbf{x}) + \frac{\Sigma^{0}(\mathbf{x}, \mathbf{x}^{0})}{\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}^{0})} \left(y(\mathbf{x}^{0}) - \mu^{0}(\mathbf{x}^{0}) \right) \end{array} \right), \begin{pmatrix} 0 & 0 \\ 0 & \Sigma^{0}(\mathbf{x}, \mathbf{x}) - \frac{(\Sigma^{0}(\mathbf{x}, \mathbf{x}^{0}))^{2}}{\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}^{0})} \end{array} \right) \right)$$

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

-

2

Gaussian Process

- A function $y(\mathbf{x}), \mathbf{x} \in \mathcal{X}$, to estimate.
- A prior on $y(\mathbf{x}), \mathbf{x} \in \mathcal{X}$, is a Gaussian process if the prior of any $(y(\mathbf{x}^0), y(\mathbf{x}^1), \dots, y(\mathbf{x}^n))^{\top}$ has a multivariate Gaussian distribution.
 - Mean function: $\mu^0(\mathbf{x})$
 - Covariance function: $\Sigma^0(\mathbf{x}, \mathbf{x}') = Cov(\mu^0(\mathbf{x}), \mu^0(\mathbf{x}')).$
 - The prior on $(y(\mathbf{x}^0), y(\mathbf{x}^1), \dots, y(\mathbf{x}^n))^{\dagger}$ is multivariate Gaussian
 - mean: $\mu^0([\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^n])$: $(\mu^0(\mathbf{x}^0), \mu^0(\mathbf{x}^1), \dots, \mu^0(\mathbf{x}^n))^\top$ covariance matrix $\Sigma^0([\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^n])$:

$$\left(\begin{array}{ccccc} \Sigma^{0}(\mathbf{x}^{0},\mathbf{x}^{0}) & \Sigma^{0}(\mathbf{x}^{0},\mathbf{x}^{1}) & \dots & \Sigma^{0}(\mathbf{x}^{0},\mathbf{x}^{n}) \\ \Sigma^{0}(\mathbf{x}^{1},\mathbf{x}^{0}) & \Sigma^{0}(\mathbf{x}^{1},\mathbf{x}^{1}) & \dots & \Sigma^{0}(\mathbf{x}^{1},\mathbf{x}^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma^{0}(\mathbf{x}^{n},\mathbf{x}^{0}) & \Sigma^{0}(\mathbf{x}^{n},\mathbf{x}^{1}) & \dots & \Sigma^{0}(\mathbf{x}^{n},\mathbf{x}^{n}) \end{array}\right)$$

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

< ∃⇒

ъ

- For any $\mathbf{x} \in \mathcal{X}$, the prior distribution on $(y(\mathbf{x}^0), y(\mathbf{x}^1))^{\top}$ is $\mathcal{N}(\boldsymbol{\mu}^0([\mathbf{x}^0, \mathbf{x}^1]), \boldsymbol{\Sigma}^0([\mathbf{x}^0, \mathbf{x}^1])).$
- Given a sample $\hat{y}^1 = Y(\mathbf{x}^0)$ at \mathbf{x}^0 . The posterior distribution of $(y(\mathbf{x}^0), y(\mathbf{x}^1)))^{\top}$ is $\mathcal{N}(\boldsymbol{\mu}^1([\mathbf{x}^0, \mathbf{x}^1]), \Sigma^1([\mathbf{x}^0, \mathbf{x}^1]))$ where

$$\begin{split} & \boldsymbol{\mu}^{1}([\mathbf{x}^{0},\mathbf{x}^{1}]) \\ = & \boldsymbol{\mu}^{0}([\mathbf{x}^{0},\mathbf{x}^{1}]) + \boldsymbol{\Sigma}^{0}([\mathbf{x}^{0},\mathbf{x}^{1}])e_{\mathbf{x}^{0}}\left(\boldsymbol{\Sigma}^{0}(\mathbf{x}^{0},\mathbf{x}^{0}) + \boldsymbol{\lambda}(\mathbf{x}^{0})\right)^{-1}\left(\hat{y}^{1} - \boldsymbol{\mu}^{0}(\mathbf{x}^{0})\right), \\ & \boldsymbol{\Sigma}^{1}([\mathbf{x}^{0},\mathbf{x}^{1}]) \\ = & \boldsymbol{\Sigma}^{0}([\mathbf{x}^{0},\mathbf{x}^{1}]) - \boldsymbol{\Sigma}^{0}([\mathbf{x}^{0},\mathbf{x}^{1}])e_{\mathbf{x}^{0}}\left(\boldsymbol{\Sigma}^{0}(\mathbf{x}^{0},\mathbf{x}^{0}) + \boldsymbol{\lambda}(\mathbf{x}^{0})\right)^{-1}e_{\mathbf{x}^{0}}^{\top}\boldsymbol{\Sigma}^{0}([\mathbf{x}^{0},\mathbf{x}^{1}]). \end{split}$$

• Noiseless:
$$y(\mathbf{x}^1)|y(\mathbf{x}^0) \sim \mathcal{N}\left(\mu^0(\mathbf{x}^1) + \frac{\Sigma^0(\mathbf{x}^1, \mathbf{x}^0)}{\Sigma^0(\mathbf{x}^0, \mathbf{x}^0)} \left(y(\mathbf{x}^0) - \mu^0(\mathbf{x}^0)\right), \Sigma^0(\mathbf{x}^1, \mathbf{x}^1) - \frac{(\Sigma^0(\mathbf{x}^1, \mathbf{x}^0))^2}{\Sigma^0(\mathbf{x}^0, \mathbf{x}^0)}\right)$$

Jianzhong Du (Fudan)

• More generally, after collecting $\hat{y}^{n+1} = Y(\mathbf{x}^n)$ (given \mathcal{F}^{n+1}), the posterior mean of $(y(\mathbf{x}^0), y(\mathbf{x}^1), \dots, y(\mathbf{x}^n))^{\top}$ in the recursive form is

$$\begin{pmatrix} \mu^{n+1}(\mathbf{x}^{0}) \\ \mu^{n+1}(\mathbf{x}^{1}) \\ \vdots \\ \mu^{n+1}(\mathbf{x}^{n}) \end{pmatrix} = \begin{pmatrix} \mu^{n}(\mathbf{x}^{0}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{n}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{n}) \end{pmatrix} + \Sigma^{n}([\mathbf{x}^{0}, \dots, \mathbf{x}^{n}])e_{\mathbf{x}^{n}} \left(\Sigma^{n}(\mathbf{x}^{n}, \mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})\right)^{-1} \left(\hat{y}^{n+1} - \mu^{n}(\mathbf{x}^{n})\right) \\ = \begin{pmatrix} \mu^{n}(\mathbf{x}^{0}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{n}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{n}) \end{pmatrix} + \frac{\Sigma^{n}([\mathbf{x}^{0}, \dots, \mathbf{x}^{n}])e_{\mathbf{x}^{n}}}{\sqrt{\Sigma^{n}(\mathbf{x}^{n}, \mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})} \frac{\hat{y}^{n+1} - \mu^{n}(\mathbf{x}^{n})}{\sqrt{\Sigma^{n}(\mathbf{x}^{n}, \mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})} \\ & = \begin{pmatrix} \mu^{n}(\mathbf{x}^{0}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{1}) \\ \vdots \\ \mu^{n}(\mathbf{x}^{n}) \end{pmatrix} + \tilde{\sigma}(\Sigma^{n}([\mathbf{x}^{0}, \dots, \mathbf{x}^{n}]), \mathbf{x}^{n}) \frac{\hat{y}^{n+1} - \mu^{n}(\mathbf{x}^{n})}{\sqrt{\Sigma^{n}(\mathbf{x}^{n}, \mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})}$$

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

3

• Before collecting $\hat{y}^{n+1} = Y(\mathbf{x}^n)$ and given \mathcal{F}^n ,

$$\hat{y}^{n+1} = y(\mathbf{x}^n) + (Y(\mathbf{x}^n) - y(\mathbf{x}^n)) \sim \mathcal{N}(\boldsymbol{\mu}^n(\mathbf{x}^n), \boldsymbol{\Sigma}^n(\mathbf{x}^n, \mathbf{x}^n) + \boldsymbol{\lambda}(\mathbf{x}^n)).$$

• the predictive distribution of $(\boldsymbol{\mu}^{n+1}(\mathbf{x}^0), \boldsymbol{\mu}^{n+1}(\mathbf{x}^1), \dots, \boldsymbol{\mu}^{n+1}(\mathbf{x}^n))^{\top}$

$$\begin{pmatrix} \boldsymbol{\mu}^{n+1}(\mathbf{x}^{0}) \\ \boldsymbol{\mu}^{n+1}(\mathbf{x}^{1}) \\ \vdots \\ \boldsymbol{\mu}^{n+1}(\mathbf{x}^{n}) \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}^{n}(\mathbf{x}^{0}) \\ \boldsymbol{\mu}^{n}(\mathbf{x}^{1}) \\ \vdots \\ \boldsymbol{\mu}^{n}(\mathbf{x}^{n}) \end{pmatrix} + \frac{\Sigma^{n}([\mathbf{x}^{0},\dots,\mathbf{x}^{n}])e_{\mathbf{x}^{n}}}{\sqrt{\Sigma^{n}(\mathbf{x}^{n},\mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})}} \frac{\hat{y}^{n+1} - \boldsymbol{\mu}^{n}(\mathbf{x}^{n})}{\sqrt{\Sigma^{n}(\mathbf{x}^{n},\mathbf{x}^{n}) + \lambda(\mathbf{x}^{n})}}$$
$$= \begin{pmatrix} \boldsymbol{\mu}^{n}(\mathbf{x}^{0}) \\ \boldsymbol{\mu}^{n}(\mathbf{x}^{1}) \\ \vdots \\ \boldsymbol{\mu}^{n}(\mathbf{x}^{n}) \end{pmatrix} + \tilde{\sigma}(\Sigma^{n}([\mathbf{x}^{0},\dots,\mathbf{x}^{n}]),\mathbf{x}^{n})Z^{(n+1)} \text{ (Note: } Z^{(n+1)} \sim \mathcal{N}(0,1).)$$

Jianzhong Du (Fudan)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● のへで December 27, 2021

• After collecting $\hat{y}^{n+1} = Y(\mathbf{x}^n)$ (given \mathcal{F}^{n+1}), the posterior distribution of $y(\mathbf{x})$ in the direct form is $\mathcal{N}(\mu^{n+1}(\mathbf{x}), \Sigma^{n+1}(\mathbf{x}))$ where (hint: $y(\mathbf{x})|\hat{y}^1, \hat{y}^2, \dots, \hat{y}^{n+1}$)

$$\mu^{n+1}(\mathbf{x}) = \mu^{0}(\mathbf{x}) + \left(\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}), \dots, \Sigma^{0}(\mathbf{x}^{n}, \mathbf{x})\right) \left(S^{n}\right)^{-1} \begin{pmatrix} \hat{y}^{1} - \mu^{0}(\mathbf{x}^{0}) \\ \vdots \\ \hat{y}^{n+1} - \mu^{0}(\mathbf{x}^{n}) \end{pmatrix}$$
$$\Sigma^{n+1}(\mathbf{x}) = \Sigma^{0}(\mathbf{x}, \mathbf{x}) - \left(\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}), \dots, \Sigma^{0}(\mathbf{x}^{n}, \mathbf{x})\right) \left(S^{n}\right)^{-1} \begin{pmatrix} \Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}) \\ \vdots \\ \Sigma^{0}(\mathbf{x}^{n}, \mathbf{x}) \end{pmatrix}$$

and
$$S^n = \Sigma^0([\mathbf{x}^0, \dots, \mathbf{x}^n]) + diag([\lambda(\mathbf{x}^0), \dots, \lambda(\mathbf{x}^n)]).$$

• Question 3: what if the observation has no noise?

Answer to Questions for Noiseless Sampling

• Question 3: Note that given $\lambda(\mathbf{x}^i) = 0, i = 0, 1, ..., n$, $S^n = \Sigma^0([\mathbf{x}^0, ..., \mathbf{x}^n])$. Then,

$$(S^n)^{-1} \begin{pmatrix} \Sigma^0(\mathbf{x}^0, \mathbf{x}_i) \\ \vdots \\ \Sigma^0(\mathbf{x}^n, \mathbf{x}_i) \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} \triangleq e_i$$

• So, $y(\mathbf{x}^i) \sim \mathcal{N}(\mu^{n+1}(\mathbf{x}^i), \Sigma^{n+1}(\mathbf{x}^i))$ where $\mu^{n+1}(\mathbf{x}^i) = y(\mathbf{x}^i)$ and $\Sigma^{n+1}(\mathbf{x}^i) = 0, i = 0, 1, \dots, n.$

Jianzhong Du (Fudan)

December 27, 2021

Notations Check Table

This document	KG	EGO
$y(\mathbf{x})$	$\mu(\mathbf{x})$	$y(\mathbf{x})$
$\min_{\mathbf{x}\in\mathcal{X}} y(\mathbf{x})$	$\max_{\mathbf{x}\in\mathcal{X}}\mu(\mathbf{x})$	$\min_{\mathbf{x}\in\mathcal{X}} y(\mathbf{x})$
$\Sigma^0({f x},{f x}')$	$\Sigma^0({f x},{f x}')$	$\sigma^2 \operatorname{Corr}[\epsilon(\mathbf{x}), \epsilon(\mathbf{x}')]$
β	β	σ^2
S^{n-1}	S^{n-1}	$\sigma^2 \mathbf{R}$
$\mu^0(\mathbf{x})$	$\mu^0(\mathbf{x})$	$\sum_{h} \beta_h f_h(\mathbf{x})$ and μ
$\mu^n(\mathbf{x}^*)$	$\mu^n(\mathbf{x}^*)$	$\hat{y}(\mathbf{x}^*)$
\hat{y}^i	\hat{y}^i	$y(\mathbf{x}^{(i+1)})$
$\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^{n-1}$	$\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^{n-1}$	$\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \dots, \mathbf{x}^{(n)}$

イロト イヨト イヨト イヨト

ъ

Outline

Introduction

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods
- Acquisition Functions for Sampling
 - Simulation Optimization with Noiseless Samples
 - Simulation Optimization with Noisy Samples
 - Calculation
- Remaining Issues
 - Model Validation
 - Identifying Important Factors

Summary

Example 1

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

æ

30 / 65

イロト イヨト イヨト イヨト

Example 2

December 27, 2021

2

31/65

イロト イヨト イヨト イヨト
Outline

1 Introduction

2 Bayesian Optimization

3 Acquisition Functions for Sampling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

4 Remaining Issues

5 Summary

Section Contents

Contents:

- For simulation optimization with noiseless samples, Efficient Global Optimization algorithm (Expected Improvement algorithm).
- For simulation optimization with noisy samples, Knowledge Gradient algorithm.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Outline

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods

3 Acquisition Functions for Sampling

• Simulation Optimization with Noiseless Samples

◆□> <@> < E> < E> < E</p>

- Simulation Optimization with Noisy Samples
- Calculation

Remaining Issues

- Model Validation
- Identifying Important Factors

Summary

Basic Settings

- Prior on $y(\mathbf{x})$ is a Gaussian process.
- Mean function of the prior: $\mu^0(\mathbf{x}) = \mu$ for all $\mathbf{x} \in \mathcal{X}$.
- Covariance function of the prior: depends on the distance:
 - $d(\mathbf{x}, \mathbf{x}') = \sum_{h=1}^{k} \theta_h |x_h x'_h|^{p_h} \ (\theta_h \ge 0, \ p_h \in [1, 2])$
 - $\Sigma^0(\mathbf{x}, \mathbf{x}') = \beta \exp[-d(\mathbf{x}, \mathbf{x}')].$
- Noiseless samples: $(\hat{y}^1, \hat{y}^2, \dots, \hat{y}^n) = (y(\mathbf{x}^0), y(\mathbf{x}^1), \dots, y(\mathbf{x}^{n-1}))^\top$.

- 3

Gaussian Process Regression

Predict at $\mathbf{x}^* \in \mathcal{X}$: • $(\mathbf{y}^{\top}, y(\mathbf{x}^*))^{\top}$ has the distribution $\mathcal{N}\left(\mathbf{1}_{n+1}\mu, \begin{pmatrix} \Sigma^{0}([\mathbf{x}^{0}, \mathbf{x}^{1}, \dots, \mathbf{x}^{n-1}]) & \Sigma^{0}([\mathbf{x}^{0}, \mathbf{x}^{1}, \dots, \mathbf{x}^{n-1}], \mathbf{x}^{*}) \\ \Sigma^{0}([\mathbf{x}^{0}, \mathbf{x}^{1}, \dots, \mathbf{x}^{n-1}], \mathbf{x}^{*})^{\top} & \Sigma^{0}(\mathbf{x}^{*}, \mathbf{x}^{*}) \end{pmatrix}\right),$ where $\Sigma^{0}([\mathbf{x}^{0}, \mathbf{x}^{1}, \dots, \mathbf{x}^{n-1}], \mathbf{x}^{*}) = (\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}^{*}), \dots, \Sigma^{0}(\mathbf{x}^{n-1}, \mathbf{x}^{*}))^{\top}$. • $\mu^n(\mathbf{x}^*) =$ $\mu + \left(\Sigma^{0}(\mathbf{x}^{0}, \mathbf{x}^{*}), \dots, \Sigma^{0}(\mathbf{x}^{n-1}, \mathbf{x}^{*})\right) \left(S^{n-1}\right)^{-1} \begin{pmatrix} y(\mathbf{x}^{0}) - \mu \\ \vdots \\ y(\mathbf{x}^{n-1}) - \mu \end{pmatrix}$ (also the maximum point of the augmented likelihood function, see Appendix 1 of the paper)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Parameter Estimation

• Parameter estimation (from the frequentist perspective):

$$\frac{\exp\left[-\frac{1}{2}\left(\begin{pmatrix} y(\mathbf{x}^{0})\\ \vdots\\ y(\mathbf{x}^{n-1}) \end{pmatrix} - \mathbf{1}_{n}\mu\right)'(S^{n-1})^{-1}\left(\begin{pmatrix} y(\mathbf{x}^{0})\\ \vdots\\ y(\mathbf{x}^{n-1}) \end{pmatrix} - \mathbf{1}_{n}\mu\right)\right]}{(2\pi)^{n/2}|S^{n-1}|^{\frac{1}{2}}}$$
$$\hat{\mu} = \frac{\mathbf{1}'_{n}(S^{n-1})^{-1}\mathbf{y}}{\mathbf{1}'_{n}(S^{n-1})^{-1}\mathbf{1}_{n}}.$$

• Mean squared error of $\mu^n(\mathbf{x}^*)$ (underestimate if σ^2 , θ_h , and p_h are estimated by MLE):

$$s^{2,n}(\mathbf{x}^*) = \Sigma^n(\mathbf{x}^*, \mathbf{x}^*) + \frac{\left(1 - \mathbf{1}'(S^{n-1})^{-1}\Sigma^0([\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^{n-1}], \mathbf{x}^*)\right)^2}{\mathbf{1}'(S^{n-1})^{-1}\mathbf{1}}$$

Jianzhong Du (Fudan)

3

Motivating Example

Objective: $\min_{\mathbf{x}} y(\mathbf{x})$

- Exploitation: sampling the points around the local minimum
 - more accurate estimate of the local minimum.
- Exploration: sampling points with high uncertainty.
 - discovering potential local minima.

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Expected Improvement

• Current best: $y_{\min} = \min(y(\mathbf{x}^0), \dots, y(\mathbf{x}^{n-1})).$ • Best in next iteration if $\mathbf{x}^{\mathrm{EI},n+1} = \mathbf{x}$: $\min(y_{\min}, y(\mathbf{x})).$ • $y(\mathbf{x})$ has posterior distribution $\mathcal{N}(\mu^n(\mathbf{x}), s^{2,n}(\mathbf{x})).$ • $\xi(\mathbf{x}) \sim \mathcal{N}(\mu^n(\mathbf{x}), s^{2,n}(\mathbf{x})).$ Expected improvement: $\mathrm{E}[I(\mathbf{x})|\mathcal{F}^n] = y_{\min} - \mathrm{E}[\min(\xi(\mathbf{x}), y_{\min})] = \mathrm{E}[\max(y_{\min} - \xi(\mathbf{x}), 0)]$ $= (y_{\min} - \mu^n(\mathbf{x})) \Phi\left(\frac{y_{\min} - \mu^n(\mathbf{x})}{s^n(\mathbf{x})}\right) + s^n(\mathbf{x})\phi\left(\frac{y_{\min} - \mu^n(\mathbf{x})}{s^n(\mathbf{x})}\right).$

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Efficient Global Optimization (EGO) Algorithm

Initialization:

Specify a set of space-filling initial points. Evaluate the function on the initial design points. Fit the Gaussian process model (DACE). Model validation.

repeat

Maximize $\mathbf{x}^{\mathrm{EI},n+1} = \arg \max_{\mathbf{x}} \mathrm{E}[I(\mathbf{x})|\mathcal{F}^n]$ by the branch-and-bound algorithm. Evaluate $y(\mathbf{x}^{\text{EI},n+1})$. Update the Gaussian process model. $n \leftarrow n+1$. until $\max_{\mathbf{x}} \mathbb{E}[I(\mathbf{x})|\mathcal{F}^n] \leq \alpha$.

Efficient Global Optimization (EGO) Algorithm

Test problem	Evaluations to meet stopping criterion	Actual error when stopped	Evaluations required for 1% accuracy
Branin	28	0.2%	28
Goldstein-Price	32	0.1%	32
Hartman 3	34	1.7%	35
Hartman 6	84	1.9%	121

Table 1. Test function results for the EGO algorithm.

Note: The stopping rule does not guarantee that the actual error is less than α .

イロト イポト イヨト イヨト

3

Convergence of EGO

- Bull (2011): When priors are typically estimated sequentially from the data, EGO may never find the minimum.
- Modified EGO (using ϵ -greedy) can achieve the near-optimal convergence rate.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Outline

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods

3 Acquisition Functions for Sampling

- Simulation Optimization with Noiseless Samples
- Simulation Optimization with Noisy Samples
- Calculation

Remaining Issues

- Model Validation
- Identifying Important Factors

Summary

Knowledge Gradient Algorithm

Initialization:

Specify the prior information and its parameters.

repeat

Maximize $\mathbf{x}^{\mathrm{KG},n} = \arg \max_{\mathbf{x}} \bar{\nu}^{\mathrm{KG},n}(\mathbf{x}).$ Evaluate noisy $Y(\mathbf{x}^{\mathrm{KG},n})$. Update the Gaussian process model. $n \leftarrow n+1$. until n = N.

Knowledge Gradient Definition

• Ideal Definition:

۲

- Current best: $\min_{u \in \mathcal{X}} \mu^n(u)$.
- Best in the next iteration if $\mathbf{x}^n = \mathbf{x}$: $\min_{u \in \mathcal{X}} \mu^{n+1}(u) |_{\mathbf{x}^n = \mathbf{x}}$.

$$\nu^{\mathrm{KG},n}(\mathbf{x}) \triangleq \min_{u \in \mathcal{X}} \mu^n(u) - \mathrm{E}\left[\min_{u \in \mathcal{X}} \mu^{n+1}(u) \mid \mathcal{F}^n, \mathbf{x}^n = \mathbf{x}\right]$$

• Approximation:

- Current best if $\mathbf{x}^n = \mathbf{x}$: $\min_{i=0,..,n} \mu^n \left(\mathbf{x}^i \right) \Big|_{\mathbf{x}^n = \mathbf{x}}$.
- Best in the next iteration if $\mathbf{x}^n = \mathbf{x}$: $\min_{i=0,..,n} \mu^{n+1} (\mathbf{x}^i)|_{\mathbf{x}^n = \mathbf{x}}$.

$$\bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) \triangleq \min_{i=0,..,n} \mu^{n}\left(\mathbf{x}^{i}\right)\Big|_{\mathbf{x}^{n}=\mathbf{x}} - \mathrm{E}\left[\min_{i=0,...,n} \mu^{n+1}\left(\mathbf{x}^{i}\right) \mid \mathcal{F}^{n}, \mathbf{x}^{n}=\mathbf{x}\right]$$

E 990

42/65

・ロト ・ 同ト ・ ヨト ・ ヨト

Knowledge Gradient Properties

• Non-negative:

$$\mathbb{E}\left[\min_{i=0,\dots,n}\mu^{n+1}\left(\mathbf{x}^{i}\right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x}\right]$$
$$=\mathbb{E}\left[\min_{i=0,\dots,n}\mu^{n}\left(\mathbf{x}^{i}\right) + \frac{e_{\mathbf{x}^{i}}^{\top}\Sigma^{(n)}(\mathbf{x}^{1},\dots,\mathbf{x}^{n})e_{\mathbf{x}^{n}}}{\sqrt{\Sigma^{(n)}(\mathbf{x}^{n},\mathbf{x}^{n}) + \sigma^{2}(\mathbf{x}^{n})}}Z^{n+1} \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x}\right]$$
$$\leq \min_{i=0,\dots,n}\mu^{n}\left(\mathbf{x}^{i}\right).$$

• $\bar{\nu}^{\mathrm{KG},0}(\mathbf{x}) = 0$. Indifferent about the first sampling.

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

3

43/65

・ロト ・ 同ト ・ ヨト ・ ヨト

Knowledge Gradient Properties

Proposition

In the case of no observation noise, $\bar{\nu}^{KG,n}(\mathbf{x}) \leq \mathrm{E}[I(\mathbf{x})|\mathcal{F}^n]$. Further, $\mathrm{E}[I(\mathbf{x})|\mathcal{F}^n] = \min_{i=0,..,n-1} \mu^n(\mathbf{x}^i) - \mathrm{E}\left[\min_{i=0,..,n} \mu^{n+1}(\mathbf{x}^i) \mid \mathcal{F}^n, \mathbf{x}^n = \mathbf{x}\right].$

Proof.

$$\begin{split} \bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) &\triangleq \min_{i=0,\dots,n} \mu^{n} \left(\mathbf{x}^{i} \right) - \mathrm{E} \left[\min_{i=0,\dots,n} \mu^{n+1} \left(\mathbf{x}^{i} \right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x} \right] \\ &= \min(\min_{i=0,\dots,n-1} y(\mathbf{x}^{i}), \mu^{n} \left(\mathbf{x}^{n} \right)) - \mathrm{E} \left[\min \left(\mu^{n+1} \left(\mathbf{x}^{n} \right), \min_{i=0,\dots,n-1} y(\mathbf{x}^{i}) \right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x} \right] \\ &\leq \min_{i=0,\dots,n-1} y(\mathbf{x}^{i}) - \mathrm{E} \left[\min \left(\mu^{n+1} \left(\mathbf{x}^{n} \right), \min_{i=0,\dots,n-1} y(\mathbf{x}^{i}) \right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x} \right] \\ &= \mathrm{E} \left[I^{n}(\mathbf{x}) \mid \mathcal{F}^{n} \right]. \end{split}$$

(Note: With noiseless samples, the predictive distribution of μ^{n+1} = the prior of y.)

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Consistency of Knowledge Gradient

Theorem

Under the KGCP policy, if Assumptions 5.0.1, 5.0.2, 5.0.3, and 5.0.4 are satisfied, then $\lim_{n\to\infty} \Sigma^n(\mathbf{x}, \mathbf{x}) = 0$ for all \mathbf{x} .

Assumptions:

- 5.0.1 $\lambda(\mathbf{x})$ and $\mu^0(\mathbf{x})$ are constant and fixed, and the parameters in covariance function (α, β) are fixed.
- 5.0.2 $\limsup_{n\to\infty} |\mu^n(\mathbf{x}) \mu^n(\mathbf{x}')|$ is bounded for every $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ a.s..
- 5.0.3 $\limsup_{n \to \infty} |\Sigma^n(\mathbf{x}, \mathbf{x}') / \lambda| \leq c < 1$ a.s..
- 5.0.4 We can exactly maximize the KGCP; $\mathbf{x}^n = \arg \max_{\mathbf{x} \in \mathcal{X}} \bar{\nu}^{\text{KG},n}(\mathbf{x})$

Framework of the Proof

Theorems, propositions and corollaries

P5.1 Upper bound of $\bar{\nu}^{\mathrm{KG},n}(\mathbf{x})$: $\bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) \leq \sqrt{\frac{2\beta\Sigma^n[\mathbf{x},\mathbf{x}]}{\pi\lambda}}$.

P5.2 Upper bound of $\Sigma^{n}[\mathbf{x}, \mathbf{x}]$, where $\mathbf{x} \in B(\mathbf{x}^{acc}, \epsilon)$.

P5.3 Upper bound of $\lim_{n\to\infty} \Sigma^n[\mathbf{x}, \mathbf{x}]$, where $\mathbf{x} \in B(\mathbf{x}^{acc}, \epsilon)$. C5.4 $\lim_{n\to\infty} \Sigma^n[\mathbf{x}^{acc}, \mathbf{x}^{acc}] = 0$.

T5.5
$$\liminf_{n\to\infty} \sup_{\mathbf{x}\in\mathcal{X}} \bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) = 0.$$

T5.6 If $\liminf_{n\to\infty} \sup_{\mathbf{x}\in\mathcal{X}} \bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) = 0$, then $\lim_{n\to\infty} \Sigma^n(\mathbf{x},\mathbf{x}) = 0$ for all $\mathbf{x}\in\mathcal{X}$.

C5.7
$$\lim_{n\to\infty} \Sigma^n(\mathbf{x},\mathbf{x}) = 0$$
 for all $\mathbf{x} \in \mathcal{X}$.

Framework of the Proof

Proposition 5.2: Upper bound of $\Sigma^{n}[\mathbf{x}, \mathbf{x}]$, where $\mathbf{x} \in B(\mathbf{x}^{acc}, \epsilon)$.

• Accumulation point \mathbf{x}^{acc} of \mathbf{x}^n : for every ϵ , there are infinitely many natural numbers n such that $\mathbf{x}^n \in B(\mathbf{x}^{acc}, \epsilon)$.

- \mathbf{x}^{mult} is farther away from \mathbf{x} than any $\mathbf{x}^{near} \in B(\mathbf{x}^{acc}, \epsilon)$.
- $\Sigma^n[\mathbf{x}, \mathbf{x}]$ will be the largest if we always sample \mathbf{x}^{mult} in the first iterations.

Outline

Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods

3 Acquisition Functions for Sampling

• Simulation Optimization with Noiseless Samples

- 2

• Simulation Optimization with Noisy Samples

• Calculation

Remaining Issues

- Model Validation
- Identifying Important Factors

Summary

Expected Improvement Calculation

• The expected improvement function is highly multi-modal.

• $E[I(x)|\mathcal{F}^n] = 0$ if $y(\mathbf{x})$ has been evaluated.

•
$$\frac{\partial \operatorname{E}[I(x)|\mathcal{F}^n]}{\partial \mu^n(\mathbf{x})} = -\Phi\left(\frac{y_{\min}-\mu^n(\mathbf{x})}{s^n(\mathbf{x})}\right) < 0.$$

•
$$\frac{\partial \operatorname{E}[I(x)|\mathcal{F}^n]}{\partial s^n(\mathbf{x})} = \phi\left(\frac{y_{\min}-\mu^n(\mathbf{x})}{s^n(\mathbf{x})}\right) > 0.$$

Jianzhong Du (Fudan)

December 27, 2021

÷.

Maximizing Expected Improvement

Proposed method: branch-and-bound algorithm.

- Upper bound on $E[I(\mathbf{x})|\mathcal{F}^n]$ over a sub-region $l_h \leq x_h \leq u_h$, $h = 1, \ldots, d$: a lower bound on $\mu^n(\mathbf{x})$ and an upper bound on $s(\mathbf{x})$.
 - Add an " α term" to make the objective convex.
 - Replacing the nonlinear term with linear under-estimators.

Calculation

Knowledge Gradient Calculation

By definition,

$$\bar{\nu}^{\mathrm{KG},n}(\mathbf{x}) \triangleq \min_{i=0,..,n} \mu^{n}\left(\mathbf{x}^{i}\right)\Big|_{\mathbf{x}^{n}=\mathbf{x}} - \mathrm{E}\left[\min_{i=0,...,n} \mu^{n+1}\left(\mathbf{x}^{i}\right) \mid \mathcal{F}^{n}, \mathbf{x}^{n}=\mathbf{x}\right],$$

where $\min_{i=0,..,n} \mu^n (\mathbf{x}^i)$ are known.

$$- \mathbf{E} \left[\min_{i=0,\dots,n} \mu^{n+1} \left(\mathbf{x}^{i} \right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x} \right]$$
$$= \mathbf{E} \left[\max_{i=0,\dots,n} -\mu^{n+1} \left(\mathbf{x}^{i} \right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x} \right]$$
$$= \mathbf{E} \left[\max_{i=0,\dots,n} -\mu^{n} \left(\mathbf{x}^{i} \right) - \tilde{\sigma}_{i}(\Sigma^{n}, \mathbf{x}^{n}) Z^{(n+1)} \right],$$

where $Z^{(n+1)} \sim \mathcal{N}(0, 1)$.

Jianzhong Du (Fudan)

December 27, 2021

Knowledge Gradient Calculation

• Sort
$$\left(-\mu^n\left(\mathbf{x}^i\right), -\tilde{\sigma}_i(\Sigma^n, \mathbf{x}^n)\right), i = 0, 1, \dots, n, \text{ as } (a_i, b_i), i = 0, 1, \dots, n \text{ such that } b_i \leq b_{i+1}.$$

$$-\operatorname{E}\left[\min_{i=0,\dots,n}\mu^{n+1}\left(\mathbf{x}^{i}\right)\mid\mathcal{F}^{n},\mathbf{x}^{n}=\mathbf{x}\right]=\operatorname{E}\left[\max_{i=0,\dots,n}a_{i}+b_{i}Z^{(n+1)}\right],$$

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

Knowledge Gradient Calculation

• Obtain a point set A^1 such that A_i^1 corresponds to the *i*-th part of the epigraph.

• An intersection point set \tilde{c}_{i+1} : $a_{A_i^1} + b_{A_i^1}z$ intersects with $a_{A_{i+1}^1} + b_{A_{i+1}^1}z$ at \tilde{c}_{i+1} .

Jianzhong Du (Fudan)

December 27, 2021

Knowledge Gradient Calculation

$$\begin{split} & \mathbf{E}\left[\max_{i=0,\dots,n} -\mu^{n+1}\left(\mathbf{x}^{i}\right) \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x}\right] \\ &= \mathbf{E}\left[\max_{i=0,\dots,n} -\mu^{n}\left(\mathbf{x}^{i}\right) - \tilde{\sigma}_{i}(\Sigma^{n}, \mathbf{x}^{n})Z^{(n+1)} \mid \mathcal{F}^{n}, \mathbf{x}^{n} = \mathbf{x}\right] \\ &= \mathbf{E}\left[\sum_{i=1}^{\tilde{n}} \left(a_{A_{i}^{1}} + b_{A_{i}^{1}}Z\right) \mathbf{1}_{[c_{i}, c_{i+1})}(Z)\right] \\ &= \mathbf{E}\left[\sum_{i=1}^{\tilde{n}} a_{A_{i}^{1}}\left(\Phi(c_{i}) - \Phi(c_{i+1})\right) + b_{A_{i}^{1}}\left(\phi(c_{i}) - \phi(c_{i+1})\right)\right] \end{split}$$

where $Z^{(n+1)} \sim \mathcal{N}(0, 1)$.

イロト イヨト イヨト イヨト

- 2

Calculation

Gradient of Knowledge Gradient

- $\arg \max_{\mathbf{x} \in \mathcal{X}} \bar{\nu}^{\mathrm{KG},n}(\mathbf{x})$ can use gradient ascent algorithm with multi-start.
 - Product rule: $\frac{\partial f(x)g(x)}{\partial x} = g(x)\frac{\partial f(x)}{\partial x} + f(x)\frac{\partial g(x)}{\partial x}$.
 - Quotient rule: $\frac{\partial f(\tilde{x})/g(x)}{\partial x} = \frac{g(x)\partial \tilde{f}(x) f(x)\partial g(x)}{(g(x))^2}$.
 - $\mu^{(n)}(\mathbf{x}^i) = Y(\mathbf{x}^i), i = 0, 1, ..., n-1$. Thus, $\frac{\partial \mu^{(n)}(\mathbf{x}^i)}{\partial \mathbf{x}^n} = 0$.
- "It may be acceptable if on one iteration the algorithm chooses a point which does not exactly maximize the knowledge gradient for continuous parameters."

Outline

1 Introduction

- 2 Bayesian Optimization
- 3 Acquisition Functions for Sampling

4 Remaining Issues

5 Summary

Outline

1 Introduction

2 Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods
- 3 Acquisition Functions for Sampling
 - Simulation Optimization with Noiseless Samples

◆□▶ ◆舂▶ ◆産▶ ◆産▶

æ

- Simulation Optimization with Noisy Samples
- Calculation

Remaining Issues

- Model Validation
- Identifying Important Factors

Summary

Cross Validation

- Basic idea: leave one sample $y(\mathbf{x}^i)$ out, predict $y(\mathbf{x}^i)$ based on remaining points n points.
- If the Gaussian process model is appropriate, $y(\mathbf{x}^i)$ and $\hat{y}_{-i}(\mathbf{x}^i)$ should be close:

$$\frac{\hat{y}_{-i}(\mathbf{x}^i) - y(\mathbf{x}^i)}{s_{-i}^2\left(\mathbf{x}^i\right)}$$

should be roughly in [-3, 3]. (standardized cross-validated residual)

Cross Validation

Diagnostic plots

- (a) $y(\mathbf{x}^i)$ v.s. $\hat{y}_{-i}(\mathbf{x}^i)$
- (b) standardized cross-validated residual v.s. $\hat{y}_{-i}(\mathbf{x}^i)$
- (c) Q-Q plot: standardized cross-validated residual v.s. random normal variables

Improving Model Fitness

Transform the function: $\log(y(\mathbf{x}))$ or $-1/y(\mathbf{x})$.

ъ

Outline

1 Introduction

2 Bayesian Optimization

- Gaussian process
- Bayesian Learning
- Sampling Methods
- 3 Acquisition Functions for Sampling
 - Simulation Optimization with Noiseless Samples

- 2

- Simulation Optimization with Noisy Samples
- Calculation

Remaining Issues

- Model Validation
- Identifying Important Factors

Summary

Identifying Important Factors

Example: $y(\mathbf{x}) = y(x_1, x_2), x_1, x_2 \in [0, 1]$. Gaussian process regression $\hat{y}(x_1, x_2)$.

- Overall average: $a_0 = \int_0^1 \int_0^1 \hat{y}(x_1, x_2) dx_1 dx_2.$
- Average effect of x_1 : $a_1(x_1) = \int_0^1 \hat{y}(x_1, x_2) dx_2$.
- Average effect of x_2 : $a_1(x_2) = \int_0^1 \hat{y}(x_1, x_2) dx_1$.
- Decomposing $\hat{y}(x_1, x_2)$:

$$\hat{y}(x_1, x_2) - a_0 = (a_1(x_1) - a_0) + (a_1(x_2) - a_0) + [\hat{y}(x_1, x_2) - a_0 - (a_1(x_1) - a_0) - (a_1(x_2) - a_0)].$$

Jianzhong Du (Fudan)

・ロト ・戸 ・ ・ヨト ・ヨー うへつ

Identifying Important Factors

• Decomposing total variance:

$$\int_{0}^{1} \int_{0}^{1} (\hat{y}(x_{1}, x_{2}) - a_{0})^{2} dx_{1} dx_{2}$$

$$= \int_{0}^{1} (a_{1}(x_{1}) - a_{0})^{2} dx_{1} + \int_{0}^{1} (a_{1}(x_{2}) - a_{0})^{2} dx_{2}$$

$$+ \int_{0}^{1} \int_{0}^{1} [\hat{y}(x_{1}, x_{2}) - a_{0} - (a_{1}(x_{1}) - a_{0}) - (a_{1}(x_{2}) - a_{0})]^{2} dx_{1} dx_{2}.$$
Total Variance

=Variance explained by x_1 + Variance explained by x_2

+ Variance explained by the interaction of x_1 and x_2 .

Jianzhong Du (Fudan)

Bayesian Optimization

December 27, 2021

3

59/65

・ロト ・ 同ト ・ ヨト ・ ヨト

Identifying Important Factors

• More generally, for
$$y(\mathbf{x}) = y(x_1, \ldots, x_d), x_1, \ldots, x_d \in [0, 1],$$

Total Variance

$$\begin{split} &= \sum_{h=1}^{d} \text{Variance explained by } x_h \\ &+ \sum_{h_1,h_2} \text{Variance explained by the interaction of } x_{h_1} \text{ and } x_{h_2} \\ &+ \sum_{h_1,h_2,h_3} \text{Variance explained by the interaction of } x_{h_1}, x_{h_2}, \text{ and } x_{h_3} + \dots \\ &+ \sum_{h_1,h_2,\dots,h_d} \text{Variance explained by the interaction of } x_{h_1}, x_{h_2}, \dots, \text{ and } x_{h_d}. \end{split}$$

(a result from the sparse grid integration)

• The importance of a variable set depends on the percentage of variance it can explain.

Jianzhong Du (Fudan)

・ロト ・ 同ト ・ ヨト ・ ヨト
Identifying Important Factors: an example

- The performance of an integrated circuit depends on 36 variables.
- Using Gaussian process regression, 2 variables and its interaction contributed 66.4% of the total variation.

Other discussions

- Predicting multiple performance measure and make trade-offs.
- Calculation issue: ill-conditioning correlation matrix, better bounding the expected improvement over a region.
- Adding gradient information.
- Multi-fidelity simulation models: use the low-fidelity but fast simulation model to add optimization.
- **6** Other acquisition functions:
 - Probability of Improvement
 - Upper Confidence Bound
 - Entropy Search and Predictive Entropy Search

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

1 Introduction

- 2 Bayesian Optimization
- 3 Acquisition Functions for Sampling
- 4 Remaining Issues

Summary

This work focuses on the Bayesian optimization for simulation optimization of continuous parameters.

- Components of Bayesian optimization:
 - Gaussian process.
 - **2** Sampling methods.
- **2** Acquisition function:
 - Noiseless samples: Efficient Global Optimization algorithm.
 - **2** Noisy samples: Knowledge Gradient algorithm.
- **3** Besides optimization:
 - Model Validation.
 - **2** Identifying important factors and visualization.

References I

- Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res., 12:2879–2904.
- Hong, L. J. and Zhang, W. (2021). Surrogate-based simulation optimization. INFORMS TutORials in Operations Research, null(null):287–311.

イロト イポト イヨト イヨト

3

THANK YOU!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○