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Introduction

Simulation Optimization

1 Evaluate the performance of a system design.

2 Select the best design x∗ = argminx y(x).
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Introduction

Types of Design Variables and Samples

Sample types:
1 Noiseless
2 Noisy

Variable types.

Today’s topic: Continuous variables + noiseless/noisy samples
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Introduction

Outline

Study Goal: Bayesian optimization for simulation optimization of
continuous parameters.

1 Noiseless samples:

Jones D R, Schonlau M, Welch W J. Efficient global optimization of
expensive black-box functions[J]. Journal of Global optimization,
1998, 13(4): 455-492. (citations: 6538)

2 Noisy samples:

Scott W, Frazier P, Powell W. The correlated knowledge gradient
for simulation optimization of continuous parameters using gaussian
process regression[J]. SIAM Journal on Optimization, 2011, 21(3):
996-1026.
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Bayesian Optimization

Components of Bayesian Optimization

A typical Bayesian optimization consists of two parts:

1 Gaussian process (stochastic kriging):
predicting function values.

2 Sampling methods:
determining the design point that should be sampled.
(This slides discuss two acquisition functions (figure of merit): EI
and KG.)
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Bayesian Optimization Gaussian process

Surrogates

Goal: to predict surface values y(x), x ∈ X , given a limited
number of random observations Y (xi), i = 0, 1, . . . , n.

Typical surrogates:
1 Linear basis function models.
2 Gaussian process.

Relationship: they can be unified through the ridge regularization
(Hong and Zhang, 2021).
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Bayesian Optimization Gaussian process

Two examples

GP regression can capture fluctuated surfaces easily.

However, linear basis function model can also achieve it.

Advantage of GP: Bayesian learning.
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Bayesian Optimization Gaussian process

An example (Continued)

Bayesian learning: construct Bayesian credible region (analogous
to confidence intervals in frequentist statistics).
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Bayesian Optimization Bayesian Learning

Learning Targets
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Subjective v.s. Objective. Let’s flip a coin:

Objective: the probability that a coin has a head is 1/2 (or 1/3 if
the coin is uneven).

Subjective: I think the probability that a coin has a head is within
[1/3, 2/3] and has an uniform distribution.

Bayesian prior and posterior are subjective probabilities.
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Suppose we want to learn the value of y(x0) (for short,
y(x0) := y). The random sample satisfies E[Yi] = y.

The unknown value y is regarded as a random variable.

Subjective belief: P(y ≤ y1) = 0.2, P(y ≤ y2) = 0.5,
P(y ≤ y3) = 0.7, .... Can be a distribution.

We sequentially update the belief toward its value: Π0,Π1, . . . ,ΠT .
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Filtration:

Example: Given y, the sample Y1 follows N (y, 1/τ) (τ is known).

Before observing Y1, note that Y1 = y + (Y1 − y).
In our belief, the prior of y as N (µ0, 1/τ0).
Sample noise Y1 − y ∼ N (0, 1/τ), independent of y’s belief.
So, in our belief, Y1 ∼ N (µ0, 1/τ0 + 1/τ). (predictive distribution of
Y1)
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Example: Given y, the sample follows N (y, 1/τ) and τ is known.

Given F0 and before observing Y1, the joint distribution of (y, Y1)
⊤:

(y, Y1)
⊤ ∼ N

(
(µ0, µ0)⊤,

(
1/τ0 1/τ0

1/τ0 1/τ0 + 1/τ

))
.

Hint:
Cov(y, Y1) = Cov(y, y+(Y1−y)) = Cov(y, y)+Cov(y, Y1−y) = 1/τ0.
The conditional distribution of y given Y1 is

y|Y1 ∼ N
(
τ0µ0 + τY1

τ0 + τ
,

1

τ + τ0

)
≜ N (µ1, 1/τ1).

(the posterior distribution of y after observing Y1)
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Example: Given y, the sample follows N (y, 1/τ) and τ is known.

Given Π0 = N (µ0, 1/τ0), µ1 = τ0µ0+τY1

τ0+τ is random due to Y1.
Note that the predictive distribution of Y1 is

N (µ0, 1/τ0 + 1/τ).

The predictive distribution of µ1 = τ0µ0

τ0+τ + τ
τ0+τ Y1 given F0 is

N
(
µ0,

τ

τ0(τ0 + τ)

)
.

In summary, we have learned given F0,

the predictive distribution of Y1 and µ1 before observing Y1,
the posterior distribution of y (Π1 = N (µ1, 1/τ1)) after observing
Y1.
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Example: Given y, the sample follows N (y, 1/τ) and τ is known.
Given F1 and before observing Y2,

the predictive distribution of Y2 is N (µ1, 1/τ1 + 1/τ).

the predictive distribution of µ2 is N
(
µ1, τ

τ1(τ1+τ)

)
Given F2 (given F1 and after observing Y2), the posterior
distribution of y is N (µ2, 1/τ2), where

τ2 =τ + τ1 = 2τ + τ0,

µ2 =
τ1µ1 + τY2

τ1 + τ
=

τ1 τ0µ0+τY1

τ0+τ + τY2

2τ + τ0
=

τ0µ0 + τY1 + τY2

2τ + τ0
.
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Bayesian Optimization Bayesian Learning

General Framework of Bayesian Learning

Example: Given y, the sample follows N (y, 1/τ) and τ is known.
Given Fn−1 and before observing Yn,

the predictive distribution of Yn is N (µn−1, 1/τn−1 + 1/τ).

the predictive distribution of µn is N
(
µn−1, τ

τn−1(τn−1+τ)

)
Given Fn (given Fn−1 and after observing Yn), the posterior
distribution of y is N (µn, 1/τn), where

τn =τ + τn−1 = nτ + τ0,

µn =
τn−1µn−1 + τY1

τn−1 + τ
=

τ0µ0 + τ(Y1 + Y2 + . . . Yn)

nτ + τ0
.

Question 1: what if the observation has no noise, i.e., τ =∞?
(y|y ∼ N (y, 0))
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Bayesian Optimization Bayesian Learning

Conjugate Family II

Conjugacy: the posterior distribution is in the same family as the
prior distribution.

Other conjugate families:

Sampling Distribution Conjugate Family

Exponential Gamma

Poisson Gamma

Uniform Pareto

Bernoulli Beta

Normal with unknown variance Normal-Gamma

Non-conjugate priors: posterior may not be analytically tractable.

numerical calculation: Markov chain Monte Carlo, importance
sampling.
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Bayesian Optimization Bayesian Learning

Bayesian Learning of Multivariate Normal

A vector y = (y(x1), y(x2), . . . , y(xd))⊤ to estimate.

The sample at xi is normal: N (y(xi), λ(xi)).

Set the prior Π0 as N (µ0,Σ0). The posterior distribution Π1 after
observing Y (xi0) is N (µ1,Σ1) where

µ1 =µ0 +Σ0exi0

(
Σ0(xi0 ,xi0) + λ(xi0)

)−1 (
Y (xi0)− µ0(xi0)

)
Σ1 =Σ0 − Σ0exi0

(
Σ0(xi0 ,xi0) + λ(xi0)

)−1 (
Σ0exi0

)⊤
Hint: Π1 = (y(x1), y(x2), . . . , y(xd))⊤|Y (xi0).
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Bayesian Optimization Bayesian Learning

Answer to Questions for Noiseless Sampling

Question 2: what if the observation has no noise, i.e., λ(xn) = 0?
Prior:

(y(x0), y(x))⊤ ∼ N
((

µ0(x0)
µ0(x)

)
,

(
Σ0(x0,x0) Σ0(x,x0)
Σ0(x0,x) Σ0(x,x)

))
Posterior:

(y(x
0
), y(x))

⊤|y(x0
) ∼

N

 y(x0)

µ0(x) +
Σ0(x,x0)

Σ0(x0,x0)

(
y(x0) − µ0(x0)

)  ,

 0 0

0 Σ0(x,x) − (Σ0(x,x0))2

Σ0(x0,x0)


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Bayesian Optimization Bayesian Learning

Gaussian Process

A function y(x), x ∈ X , to estimate.

A prior on y(x), x ∈ X , is a Gaussian process if the prior of any
(y(x0), y(x1), . . . , y(xn))⊤ has a multivariate Gaussian
distribution.

Mean function: µ0(x)
Covariance function: Σ0(x,x′) = Cov(µ0(x), µ0(x′)).
The prior on (y(x0), y(x1), . . . , y(xn))⊤ is multivariate Gaussian

mean: µ0([x0,x1, . . . ,xn]): (µ0(x0), µ0(x1), . . . , µ0(xn))⊤

covariance matrix Σ0([x0,x1, . . . ,xn]):
Σ0(x0,x0) Σ0(x0,x1) . . . Σ0(x0,xn)
Σ0(x1,x0) Σ0(x1,x1) . . . Σ0(x1,xn)

...
...

. . .
...

Σ0(xn,x0) Σ0(xn,x1) . . . Σ0(xn,xn)


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Bayesian Optimization Bayesian Learning

Gaussian Process Regression
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Bayesian Optimization Bayesian Learning

Gaussian Process Regression

For any x ∈ X , the prior distribution on (y(x0), y(x1))⊤ is
N (µ0([x0,x1]),Σ0([x0,x1])).

Given a sample ŷ1 = Y (x0) at x0. The posterior distribution of
(y(x0), y(x1)))⊤ is N (µ1([x0,x1]),Σ1([x0,x1])) where

µ1([x0,x1])

=µ0([x0,x1]) + Σ0([x0,x1])ex0

(
Σ0(x0,x0) + λ(x0)

)−1 (
ŷ1 − µ0(x0)

)
,

Σ1([x0,x1])

=Σ0([x0,x1])− Σ0([x0,x1])ex0

(
Σ0(x0,x0) + λ(x0)

)−1
e⊤x0Σ0([x0,x1]).

Noiseless: y(x1)|y(x0) ∼
N

(
µ0(x1) + Σ0(x1,x0)

Σ0(x0,x0)

(
y(x0)− µ0(x0)

)
,Σ0(x1,x1)− (Σ0(x1,x0))2

Σ0(x0,x0)

)
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Bayesian Optimization Bayesian Learning

Gaussian Process Regression

More generally, after collecting ŷn+1 = Y (xn) (given Fn+1), the
posterior mean of (y(x0), y(x1), . . . , y(xn))⊤ in the recursive form
is


µn+1(x0)

µn+1(x1)

.

.

.

µn+1(xn)

 =


µn(x0)

µn(x1)

.

.

.
µn(xn)

 + Σ
n
([x

0
, . . . ,x

n
])exn

(
Σ

n
(x

n
,x

n
) + λ(x

n
)
)−1

(
ŷ
n+1 − µ

n
(x

n
)
)

=


µn(x0)

µn(x1)

.

.

.
µn(xn)

 +
Σn([x0, . . . ,xn])exn√
Σn(xn,xn) + λ(xn)

ŷn+1 − µn(xn)√
Σn(xn,xn) + λ(xn)

≜


µn(x0)

µn(x1)

.

.

.
µn(xn)

 + σ̃(Σ
n
([x

0
, . . . ,x

n
]),x

n
)

ŷn+1 − µn(xn)√
Σn(xn,xn) + λ(xn)
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Bayesian Optimization Bayesian Learning

Gaussian Process Regression

Before collecting ŷn+1 = Y (xn) and given Fn,

ŷn+1 = y(xn)+ (Y (xn)− y(xn)) ∼ N (µn(xn),Σn(xn,xn)+λ(xn)).

the predictive distribution of (µn+1(x0),µn+1(x1), . . . ,µn+1(xn))⊤


µn+1(x0)

µn+1(x1)

.

.

.

µn+1(xn)

 =


µn(x0)

µn(x1)

.

.

.
µn(xn)

 +
Σn([x0, . . . ,xn])exn√
Σn(xn,xn) + λ(xn)

ŷn+1 − µn(xn)√
Σn(xn,xn) + λ(xn)

=


µn(x0)

µn(x1)

.

.

.
µn(xn)

 + σ̃(Σ
n
([x

0
, . . . ,x

n
]),x

n
)Z

(n+1)
(Note: Z

(n+1) ∼ N (0, 1).)
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Bayesian Optimization Bayesian Learning

Gaussian Process Regression

After collecting ŷn+1 = Y (xn) (given Fn+1), the posterior
distribution of y(x) in the direct form is N (µn+1(x),Σn+1(x))
where (hint: y(x)|ŷ1, ŷ2, . . . , ŷn+1)

µn+1(x) =µ0(x) +
(
Σ0(x0,x), . . . ,Σ0(xn,x)

)
(Sn)

−1

 ŷ1 − µ0(x0)
...

ŷn+1 − µ0(xn)

 ,

Σn+1(x) =Σ0(x,x)−
(
Σ0(x0,x), . . . ,Σ0(xn,x)

)
(Sn)

−1

 Σ0(x0,x)
...

Σ0(xn,x)


and Sn = Σ0([x0, . . . ,xn]) + diag([λ(x0), . . . , λ(xn)]).

Question 3: what if the observation has no noise?
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Bayesian Optimization Bayesian Learning

Answer to Questions for Noiseless Sampling

Question 3: Note that given λ(xi) = 0, i = 0, 1, . . . , n,
Sn = Σ0([x0, . . . ,xn]). Then,

(Sn)−1

 Σ0(x0,xi)
...

Σ0(xn,xi)

 =


0
...
1
...
0

 ≜ ei

So, y(xi) ∼ N (µn+1(xi),Σn+1(xi)) where µn+1(xi) = y(xi) and
Σn+1(xi) = 0, i = 0, 1, . . . , n.
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Bayesian Optimization Bayesian Learning

Notations Check Table

This document KG EGO

y(x) µ(x) y(x)

minx∈X y(x) maxx∈X µ(x) minx∈X y(x)

Σ0(x,x′) Σ0(x,x′) σ2Corr[ϵ(x), ϵ(x′)]

β β σ2

Sn−1 Sn−1 σ2R

µ0(x) µ0(x)
∑

h βhfh(x) and µ

µn(x∗) µn(x∗) ŷ(x∗)

ŷi ŷi y(x(i+1))

x0,x1, . . . ,xn−1 x0,x1, . . . ,xn−1 x(1),x(2) . . . ,x(n)
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Bayesian Optimization Sampling Methods

Example 1
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Bayesian Optimization Sampling Methods

Example 2
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Acquisition Functions

Section Contents

Contents:

1 For simulation optimization with noiseless samples, Efficient
Global Optimization algorithm (Expected Improvement
algorithm).

2 For simulation optimization with noisy samples, Knowledge
Gradient algorithm.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Basic Settings

Prior on y(x) is a Gaussian process.

Mean function of the prior: µ0(x) = µ for all x ∈ X .
Covariance function of the prior: depends on the distance:

d(x,x′) =
∑k

h=1 θh|xh − x′
h|ph (θh ≥ 0, ph ∈ [1, 2])

Σ0(x,x′) = β exp[−d(x,x′)].

Noiseless samples: (ŷ1, ŷ2, . . . , ŷn) = (y(x0), y(x1), . . . , y(xn−1))⊤.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Gaussian Process Regression

Predict at x∗ ∈ X :
(y⊤, y(x∗))⊤ has the distribution

N
(
1n+1µ,

(
Σ0([x0,x1, . . . ,xn−1]) Σ0([x0,x1, . . . ,xn−1],x∗)

Σ0([x0,x1, . . . ,xn−1],x∗)⊤ Σ0(x∗,x∗)

))
,

where Σ0([x0,x1, . . . ,xn−1],x∗) =
(
Σ0(x0,x∗), . . . ,Σ0(xn−1,x∗)

)⊤
.

µn(x∗) =

µ+
(
Σ0(x0,x∗), . . . ,Σ0(xn−1,x∗)

) (
Sn−1

)−1

 y(x0)− µ
...

y(xn−1)− µ


(also the maximum point of the augmented likelihood function, see
Appendix 1 of the paper)
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Acquisition Functions Simulation Optimization with Noiseless Samples

Parameter Estimation

Parameter estimation (from the frequentist perspective):

exp

− 1
2


 y(x0)

...
y(xn−1)

− 1nµ


′

(Sn−1)−1


 y(x0)

...
y(xn−1)

− 1nµ




(2π)n/2|Sn−1| 12

µ̂ =
1′
n(S

n−1)−1y

1′
n(S

n−1)−11n
.

Mean squared error of µn(x∗) (underestimate if σ2, θh, and ph are
estimated by MLE):

s2,n (x∗) = Σn(x∗,x∗) +

(
1− 1′(Sn−1)−1Σ0([x0,x1, . . . ,xn−1],x∗)

)2
1′(Sn−1)−11

.

Jianzhong Du (Fudan) Bayesian Optimization December 27, 2021 35 / 65



Acquisition Functions Simulation Optimization with Noiseless Samples

Motivating Example

Objective: minx y(x)
1 Exploitation: sampling the

points around the local
minimum

more accurate estimate of
the local minimum.

2 Exploration: sampling points
with high uncertainty.

discovering potential local
minima.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Expected Improvement

Current best: ymin = min(y(x0), . . . , y(xn−1)).

Best in next iteration if xEI,n+1 = x: min(ymin, y(x)).

y(x) has posterior distribution N (µn(x), s2,n(x)).
ξ(x) ∼ N (µn(x), s2,n(x)). Expected improvement:

E[I(x)|Fn] =ymin − E[min(ξ(x), ymin)] = E[max(ymin − ξ(x), 0)]

= (ymin − µn(x)) Φ

(
ymin − µn(x)

sn(x)

)
+ sn(x)ϕ

(
ymin − µn(x)

sn(x)

)
.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Efficient Global Optimization (EGO) Algorithm

Initialization:
Specify a set of space-filling initial points.
Evaluate the function on the initial design points.
Fit the Gaussian process model (DACE).
Model validation.

repeat
Maximize xEI,n+1 = argmaxx E[I(x)|Fn] by the
branch-and-bound algorithm.
Evaluate y(xEI,n+1).
Update the Gaussian process model.
n← n+ 1.

until maxx E[I(x)|Fn] ≤ α.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Efficient Global Optimization (EGO) Algorithm

Note: The stopping rule does not guarantee that the actual error is less
than α.
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Acquisition Functions Simulation Optimization with Noiseless Samples

Convergence of EGO

Bull (2011): When priors are typically estimated sequentially from
the data, EGO may never find the minimum.

Modified EGO (using ϵ-greedy) can achieve the near-optimal
convergence rate.
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Acquisition Functions Simulation Optimization with Noisy Samples

Knowledge Gradient Algorithm

Initialization:
Specify the prior information and its parameters.

repeat
Maximize xKG,n = argmaxx ν̄

KG,n(x).
Evaluate noisy Y (xKG,n).
Update the Gaussian process model.
n← n+ 1.

until n = N .
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Acquisition Functions Simulation Optimization with Noisy Samples

Knowledge Gradient Definition

Ideal Definition:

Current best: minu∈X µn(u).
Best in the next iteration if xn = x: minu∈X µn+1(u)

∣∣
xn=x

.

νKG,n(x) ≜ min
u∈X

µn(u)− E

[
min
u∈X

µn+1(u) | Fn,xn = x

]
.

Approximation:

Current best if xn = x: mini=0,..,n µ
n
(
xi
)∣∣

xn=x
.

Best in the next iteration if xn = x: mini=0,..,n µ
n+1

(
xi
)∣∣

xn=x
.

ν̄KG,n(x) ≜ min
i=0,..,n

µn
(
xi
)∣∣∣∣

xn=x

−E

[
min

i=0,...,n
µn+1

(
xi
)
| Fn,xn = x

]
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Acquisition Functions Simulation Optimization with Noisy Samples

Knowledge Gradient Properties

Non-negative:

E
[

min
i=0,...,n

µn+1
(
xi
)
| Fn,xn = x

]
=E

[
min

i=0,...,n
µn

(
xi
)
+

e⊤
xiΣ

(n)(x1, . . . ,xn)exn√
Σ(n)(xn,xn) + σ2(xn)

Zn+1 | Fn,xn = x

]
≤ min

i=0,...,n
µn

(
xi
)
.

ν̄KG,0(x) = 0. Indifferent about the first sampling.
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Acquisition Functions Simulation Optimization with Noisy Samples

Knowledge Gradient Properties

Proposition

In the case of no observation noise, ν̄KG,n(x) ≤ E[I(x)|Fn]. Further,
E[I(x)|Fn] = mini=0,..,n−1 µ

n
(
xi
)
− E

[
mini=0,..,n µ

n+1
(
xi
)
| Fn,xn = x

]
.

Proof.

ν̄
KG,n

(x) ≜ min
i=0,..,n

µ
n

(
x
i
)
− E

[
min

i=0,...,n
µ
n+1

(
x
i
)

| Fn
,x

n
= x

]
=min( min

i=0,...,n−1
y(x

i
), µ

n (
x
n)

) − E

[
min

(
µ
n+1 (

x
n)

, min
i=0,...,n−1

y(x
i
)

)
| Fn

,x
n

= x

]
≤ min

i=0,...,n−1
y(x

i
) − E

[
min

(
µ
n+1 (

x
n)

, min
i=0,...,n−1

y(x
i
)

)
| Fn

,x
n

= x

]
=E

[
I
n
(x) | Fn]

.

(Note: With noiseless samples, the predictive distribution of µn+1 = the

prior of y.)
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Acquisition Functions Simulation Optimization with Noisy Samples

Consistency of Knowledge Gradient

Theorem

Under the KGCP policy, if Assumptions 5.0.1, 5.0.2, 5.0.3, and 5.0.4
are satisfied, then limn→∞Σn(x,x) = 0 for all x.

Assumptions:

5.0.1 λ(x) and µ0(x) are constant and fixed, and the parameters in
covariance function (α, β )are fixed.

5.0.2 lim supn→∞ |µn(x)− µn(x′)| is bounded for every x,x′ ∈ X a.s..

5.0.3 lim supn→∞ |Σn(x,x′)/λ| ≤ c < 1 a.s..

5.0.4 We can exactly maximize the KGCP; xn = argmaxx∈X ν̄KG,n(x)
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Acquisition Functions Simulation Optimization with Noisy Samples

Framework of the Proof

Theorems, propositions and corollaries

P5.1 Upper bound of ν̄KG,n(x): ν̄KG,n(x) ≤
√

2βΣn[x,x]
πλ .

P5.2 Upper bound of Σn[x,x], where x ∈ B(xacc, ϵ).

P5.3 Upper bound of limn→∞Σn[x,x], where x ∈ B(xacc, ϵ).

C5.4 limn→∞ Σn[xacc,xacc] = 0.

T5.5 lim infn→∞ supx∈X ν̄KG,n(x) = 0.

T5.6 If lim infn→∞ supx∈X ν̄KG,n(x) = 0, then limn→∞Σn(x,x) = 0 for
all x ∈ X .
C5.7 limn→∞ Σn(x,x) = 0 for all x ∈ X .
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Acquisition Functions Simulation Optimization with Noisy Samples

Framework of the Proof

Proposition 5.2: Upper bound of Σn[x,x], where x ∈ B(xacc, ϵ).

Accumulation point xacc of xn: for every ϵ, there are infinitely
many natural numbers n such that xn ∈ B(xacc, ϵ).

xmult is farther away from x than any xnear ∈ B(xacc, ϵ).

Σn[x,x] will be the largest if we always sample xmult in the first
iterations.
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Acquisition Functions Calculation

Expected Improvement Calculation

The expected improvement function is highly multi-modal.

E[I(x)|Fn] = 0 if y(x) has been evaluated.

∂ E[I(x)|Fn]
∂µn(x) = −Φ

(
ymin−µn(x)

sn(x)

)
< 0.

∂ E[I(x)|Fn]
∂sn(x) = ϕ

(
ymin−µn(x)

sn(x)

)
> 0.
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Acquisition Functions Calculation

Maximizing Expected Improvement

Proposed method: branch-and-bound algorithm.

Upper bound on E[I(x)|Fn] over a sub-region lh ≤ xh ≤ uh,
h = 1, . . . , d: a lower bound on µn(x) and an upper bound on s(x).

Add an “α term” to make the objective convex.
Replacing the nonlinear term with linear under-estimators.
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Acquisition Functions Calculation

Knowledge Gradient Calculation

By definition,

ν̄KG,n(x) ≜ min
i=0,..,n

µn
(
xi
)∣∣∣∣

xn=x

− E

[
min

i=0,...,n
µn+1

(
xi
)
| Fn,xn = x

]
,

where mini=0,..,n µ
n
(
xi
)
are known.

− E

[
min

i=0,...,n
µn+1

(
xi
)
| Fn,xn = x

]
=E

[
max

i=0,...,n
−µn+1

(
xi
)
| Fn,xn = x

]
=E

[
max

i=0,...,n
−µn

(
xi
)
− σ̃i(Σ

n,xn)Z(n+1)

]
,

where Z(n+1) ∼ N (0, 1).
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Acquisition Functions Calculation

Knowledge Gradient Calculation

Sort
(
−µn

(
xi
)
,−σ̃i(Σn,xn)

)
, i = 0, 1, . . . , n, as (ai, bi),

i = 0, 1, . . . , n such that bi ≤ bi+1.

−E

[
min

i=0,...,n
µn+1

(
xi
)
| Fn,xn = x

]
= E

[
max

i=0,...,n
ai + biZ

(n+1)

]
,
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Acquisition Functions Calculation

Knowledge Gradient Calculation

Obtain a point set A1 such that A1
i corresponds to the i-th part of

the epigraph.

An intersection point set c̃i+1: aA1
i
+ bA1

i
z intersects with

aA1
i+1

+ bA1
i+1

z at c̃i+1.
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Acquisition Functions Calculation

Knowledge Gradient Calculation

E

[
max

i=0,...,n
−µn+1

(
xi
)
| Fn,xn = x

]
=E

[
max

i=0,...,n
−µn

(
xi
)
− σ̃i(Σ

n,xn)Z(n+1) | Fn,xn = x

]
=E

[
ñ∑

i=1

(
aA1

i
+ bA1

i
Z
)
1[ci,ci+1)(Z)

]

=E

[
ñ∑

i=1

aA1
i
(Φ(ci)− Φ(ci+1)) + bA1

i
(ϕ(ci)− ϕ(ci+1))

]

where Z(n+1) ∼ N (0, 1).
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Acquisition Functions Calculation

Gradient of Knowledge Gradient

argmaxx∈X ν̄KG,n(x) can use gradient ascent algorithm with
multi-start.

Product rule: ∂f(x)g(x)
∂x = g(x)∂f(x)∂x + f(x)∂g(x)∂x .

Quotient rule: ∂f(x)/g(x)
∂x = g(x)∂f(x)−f(x)∂g(x)

(g(x))2 .

µ(n)(xi) = Y (xi), i = 0, 1, . . . , n− 1. Thus, ∂µ(n)(xi)
∂xn = 0.

“It may be acceptable if on one iteration the algorithm chooses a
point which does not exactly maximize the knowledge gradient for
continuous parameters.”
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Remaining Issues Model Validation

Cross Validation

Basic idea: leave one sample y(xi) out, predict y(xi) based on
remaining points n points.
If the Gaussian process model is appropriate, y(xi) and ŷ−i(x

i)
should be close:

ŷ−i(x
i)− y(xi)

s2−i (x
i)

should be roughly in [−3, 3]. (standardized cross-validated
residual)
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Remaining Issues Model Validation

Cross Validation

Diagnostic plots

(a) y(xi) v.s. ŷ−i(x
i)

(b) standardized cross-validated residual v.s. ŷ−i(x
i)

(c) Q-Q plot: standardized cross-validated residual v.s. random
normal variables
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Remaining Issues Model Validation

Improving Model Fitness

Transform the function: log(y(x)) or −1/y(x).
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Remaining Issues Identifying Important Factors

Identifying Important Factors

Example: y(x) = y(x1, x2), x1, x2 ∈ [0, 1]. Gaussian process regression
ŷ(x1, x2).

Overall average: a0 =
∫ 1
0

∫ 1
0 ŷ(x1, x2)dx1dx2.

Average effect of x1: a1(x1) =
∫ 1
0 ŷ(x1, x2)dx2.

Average effect of x2: a1(x2) =
∫ 1
0 ŷ(x1, x2)dx1.

Decomposing ŷ(x1, x2):

ŷ(x1, x2)− a0 =(a1(x1)− a0) + (a1(x2)− a0)

+ [ŷ(x1, x2)− a0 − (a1(x1)− a0)− (a1(x2)− a0)].
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Remaining Issues Identifying Important Factors

Identifying Important Factors

Decomposing total variance:∫ 1

0

∫ 1

0
(ŷ(x1, x2)− a0)

2dx1dx2

=

∫ 1

0
(a1(x1)− a0)

2dx1 +

∫ 1

0
(a1(x2)− a0)

2dx2

+

∫ 1

0

∫ 1

0
[ŷ(x1, x2)− a0 − (a1(x1)− a0)− (a1(x2)− a0)]

2dx1dx2.

Total Variance

=Variance explained by x1 +Variance explained by x2

+Variance explained by the interaction of x1 and x2.
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Remaining Issues Identifying Important Factors

Identifying Important Factors

More generally, for y(x) = y(x1, . . . , xd), x1, . . . , xd ∈ [0, 1],

Total Variance

=
d∑

h=1

Variance explained by xh

+
∑

h1,h2

Variance explained by the interaction of xh1
and xh2

+
∑

h1,h2,h3

Variance explained by the interaction of xh1
, xh2

, and xh3
+ . . .

+
∑

h1,h2,...,hd

Variance explained by the interaction of xh1
, xh2

, . . . , and xhd
.

(a result from the sparse grid integration)

The importance of a variable set depends on the percentage of
variance it can explain.
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Remaining Issues Identifying Important Factors

Identifying Important Factors: an example

The performance of an integrated circuit depends on 36 variables.

Using Gaussian process regression, 2 variables and its interaction
contributed 66.4% of the total variation.
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Remaining Issues Identifying Important Factors

Other discussions

1 Predicting multiple performance measure and make trade-offs.

2 Calculation issue: ill-conditioning correlation matrix, better
bounding the expected improvement over a region.

3 Adding gradient information.

4 Multi-fidelity simulation models: use the low-fidelity but fast
simulation model to add optimization.

5 Other acquisition functions:

Probability of Improvement
Upper Confidence Bound
Entropy Search and Predictive Entropy Search
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Summary

Summary

This work focuses on the Bayesian optimization for simulation
optimization of continuous parameters.

1 Components of Bayesian optimization:
1 Gaussian process.
2 Sampling methods.

2 Acquisition function:
1 Noiseless samples: Efficient Global Optimization algorithm.
2 Noisy samples: Knowledge Gradient algorithm.

3 Besides optimization:
1 Model Validation.
2 Identifying important factors and visualization.
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Summary
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THANK YOU!
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